
Java COM

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL MARCH 31, 2002

January 2002 Volume:7 Issue:1

The World’s Leading Java Resource

TM

J2EE Testing:What’s It to You Jonathan Maron
An overview of the CTS for J2EE component developers 12

Journeyman J2EE: Getting Focus()ed – Charles Arehart

and a Quick JavaScript Lesson A win-win situation 38

Regex: Using Regular Expressions in J2SE 1.4 David Weller
Even a regex neophyte should have no trouble with the pattern 46

Feature: Using Assertions in Java Jonathan Amsterdam
An easy way to build confidence in your code 52

Multithreaded Access: Synchronizing Vishal Goenka

Java Threads A simple and elegant solution 60

Dynamic Tools: Evolutive Java Applications Alvaro Schwarzberg
Enable functionality-driven software architecture 66

Feature: J2ME Benchmarking Carl Barratt & Glenn Coates
Evaluating the performance of a JVM objectively 78

Embedded Computing: Hardware Accelerators Ron Stein

for J2ME Come of Age Java gets a needed boost 84

Q&A: Ask Doctor Java James McGovern
Prescriptions for your Java ailments 90

From the Editor
by Alan Williamson pg. 5

Letters to the Editor
pg. 7

J2EE Application Security
by Timothy Fisher pg. 28

Core J2EE Patterns
by Dan Malks pg. 32

Industry Commentary
by Nigel Thomas pg. 74

“Ross Report”
pg. 100

Cubist Threads
by Blair Wyman pg. 114

T1

T2

T3T4

21 3 DJBinder

Java COM

2 JANUARY 2002

sonic
www.sonic.com

3JANUARY 2002

Java COM

zerog
www.zerog.com

Java COM

4 JANUARY 2002

bea
www.bea.com

5JANUARY 2002

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side. Rumor has it
he welcomes all suggestions and comments!

F R O M T H E E D I T O RD IF

Scandalous Propaganda:
‘Twenty-Eight Times Faster than J2EE!’

alan@sys-con.com

It’s the start of a new year; what fruits will
our computing orchard serve up this sea-
son? This time last year the industry was

excitedly preparing us for how Web services
would take over. Sun was gearing up for their
Sun ONE announcement in February after
Microsoft had begun filtering out informa-
tion on what their .NET was really about.
With 12 months now in the time bank, I can
truly say I have not seen any major change.
Just a lot more people than usual, particular-
ly vendor companies, talking a great game.

A couple of months ago I introduced the
notion that the whole Web services revolution
was a marketing gimmick, dreamed up to put
a new spin on old products. I purposely went
a little over the top just to test the water. I was
interested in what you thought about the
whole Web services movement and I’m happy
to report that you were not backward in com-
ing forward. I received a lot of e-mail and I
thoroughly enjoyed the dialogue with you
over this. I can safely report that approxi-
mately half of the responses agreed with what
I had to say; 35% thought I was missing the
point and 15% believed I was so far off base
that I didn’t have a clue what I was talking
about. Coincidentally, the majority of that
15% were sales and marketing people, which I
have to admit made me chortle somewhat.

My major difficulty with Web services, I
believe, stems from the name. I just hate the
name. It says nothing and in my opinion
undervalues the whole movement. Web servic-
es is not a revolution but more of an evolution
– taking technologies and attempting to coor-
dinate them into one coherent solution as
opposed to having formats and standards fight
for their market share. Take e-mail, for exam-
ple. Turn the clock back 20 years, or even as lit-
tle as 10, and you had e-mail systems that

could not communicate with one another
without a specialized gateway that would
translate the e-mail. With the standardization
of SMTP as the underlying mail transport pro-
tocol, we can now e-mail the majority of the
world without too much worry. So, while I
applaud the movement, I’ve spent the last 12
months searching for a much better name
without knowing it. For me, Web services is the
whole Java/JavaScript confusion all over again.

Having realized a couple of months ago that
I was indeed on a mission to find a new name
for Web services, my standpoint became a little
different and I began trying to tease suggestions
out of people without them knowing what I was
up to. I wanted an honest and simple name,
something that summed up the whole evolu-
tion without using the words “Web” or “service.”

I am proud to say I think I have found
something that I believe is better than what we
are struggling with at the moment. Sadly I
can’t take the credit; that would fall to Mel
Stockwell from IONA. In a lively e-mail
exchange he uttered a phrase that I simply had
to pounce on: “middleware for the masses.”

You may disagree with it, but I think Mel
has stumbled onto something big here and
until I hear something better, I’ll be using
this to describe solutions that are open,
available, and flexible (aka Web services).

• • •
Speaking of marketing...our “friends” at

Microsoft are at it again. In fact, this month they
have incensed me so much that this editorial is
coming to you via StarOffice, not Word! (I have
to admit, I’m pleasantly surprised at how good
version 6.0 is.) Late last month I was sent a URL
to a site that, at first glance, you would be forgiv-
en for thinking was a third-party developer’s

ALAN WILLIAMSON EDITOR-IN-CHIEF

J2SE
H

om
e

J2E
E

J2M
EI N T E R N A T I O N A L A D V I S O R Y B O A R D

• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),
• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),

• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software
Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
J2EE EDITOR: AJIT SAGAR

J2ME EDITOR: JASON BRIGGS
J2SE EDITOR: KEITH BROWN

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EXECUTIVE EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
EDITOR: NANCY VALENTINE

ASSOCIATE EDITORS: JAMIE MATUSOW
GAIL SCHULTZ

ONLINE EDITOR: LIN GOETZ
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
JONATHAN AMSTERDAM, CHARLES AREHART, BILL BALOGLU, CARL BARRATT,

JASON BRIGGS, KEITH BROWN, GLENN COATES, TIMOTHY FISHER,
VISHAL GOENKA, BORIS LUBLINSKY, DAN MALKS, JOHN MARON,

JAMES MCGOVERN, AJIT SAGAR, ALVARO SCHWARZBERG, RON STEIN,
NIGEL THOMAS, DAVID WELLER, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Java COM

–continued on page 88

Java COM

6 JANUARY 2002

togethersoft
www.togethersoft.com

7JANUARY 2002

Java COM

KBrowser’s Performance?

Jason Briggs’ review of

KBrowser (Vol. 6, issue

11) was interesting and use-

ful. Thanks for highlighting

it.

One area he didn’t cover

was KBrowser’s perform-

ance. I’d like to know his

impression of how it per-

formed, not only for WAP

content but also for simple

HTML content as well. I’m

also interested in how he thinks KBrowser will

perform on J2ME-enabled wireless handsets,

now and in the future.

Ron Stein
ron@nazomi.com

I didn’t include performance, because I

don’t have a real phone to run

it on, unfortunately. Up until

the last month or so there

haven’t been any MIDP-capa-

ble phones in the UK except

for Nokia’s PDA phone combi-

nation (which has a 55MHz

processor and runs

PersonalJava out of the box –

not really a useful benchmark-

ing system in this case).

Motorola has just released

an MIDP phone here, but I’ve yet to get my

hands on it.

Performance on my laptop, however, was

fine, but not really an indicator of how it will

actually run on a phone – your guess is as

good as mine. However, gut feeling (from run-

ning MIDP apps on a Palm and on the afore-

mentioned Nokia) says unless they’re doing

something exceptionally illogical, not that

likely I think, then performance will be good

enough so it will all finally depend on the net-

work speed.

I couldn’t run it on HTML content, because

the evaluation edition they sent me was WAP

only.

Jason Briggs
jasonbriggs
@sys-con.com

Is New Technology
Always Good?

Iagree with Alan William-

son’s comments in his

editorial, “<Web Services &

XML>” (Vol. 6, issue 11).

For Web services, the battle

is not defining how to cre-

ate and/or access Web services, which is

where we’re currently at. The difficulty is in

changing Web usage. Folks are just getting

comfortable with URLs, and while they bene-

fit from not depending on a provider for a

service, it also gives them some stability. I

think it makes sense when architecting or

building new services (which don’t have

issues with stability or familiarity), but users

are another ball game.

As far as XML usage, it seems that we tend

to throw a new technology at everything, most-

ly because we’ve learned something new and

want to make it useful. But it can degrade and

impede a system’s internal communication.

Perhaps Web services will become more

important if, as I predict, more robust user

interfaces are doing the interacting with

them, rather than users in a Web browser.

Vince Marco
vince.marco@iname.com

Enough Is Enough!

When are Bill Baloglu and

Bill Palmieri (Career

Opportunities column) going to

seek help for the bottled-up

anger they have toward anyone

under the age of 50! Every article

they write is essentially about

how dumb the rest of us are (the

under-50 crowd) and how smart

they are.

Why do they feel the need to write article

after article about how apparently no one is

qualified to call themselves a Java engineer

unless they have 20 years of experience? I per-

sonally don’t consider myself a Java engineer,

but I have worked with a few that I would con-

sider that level and none of them were older

than 30. I’ve also worked with developers with

15–20 years’ experience who I could code

around the day I stepped out of college.

Am I saying that all employees over the

age of 50 are over their heads in

the technology field? Absolutely

not. But please admit that there

are some people in their thirties

and even their twenties who are

intelligent and experienced and

could do the job! If a person can

do the job, then he or she will

get the assignment.

Richard Dean
richarddean@yahoo.com

After a thorough search of all our articles, I

couldn’t find a single reference to age.

Our January article (Vol. 6, issue 1) dealt

with the “know” engineer and the “under-

stand” engineer – no mention of age there.

Our February article (Vol. 6, issue 2) talked

about the B2B marketplace – no mention of

age there.

March (Vol. 6, issue 3) talked about money

levels for senior, mid-level, and junior engi-

neers – no mention of age there.

May (Vol. 6, issue 5) discussed how to

write an effective résumé – no mention of age

there.

I think you get the picture.

There is a reason why we use the term sen-

ior. It has to do with the length of time of actual

work experience as well as the technological

expertise an engineer brings to his or her job. The

senior engineers we work with are not over 50, or

any specific age. However, they do possess the

skills and years of experience we talk about.

Until then, we wish you the best and keep

sending us your e-mails.

Billy Palmieri
billy@objectfocus.com

Important Issues

Ijust read Charles Arehart’s excellent article

“The Many Sides of J2EE Development”

(Vol. 6, issue 11). I’ve learned a lot from this

article and his previous one, “Making the

Move to J2EE” (Vol.

6, issue 9). Mr.

Arehart presents

important issues in

an excellent man-

ner. I’m beginning

to see that servlets

are a more impor-

tant part of the J2EE

spec than I had pre-

viously imagined.

Frank Staheli
BYU

Don’t Use Expensive EJBs!

I t’s was such a joy to read

“J2EE Without EJBs?” by

Vince Bonfanti (Vol. 6, issue

11).

Many people believe that

J2EE has to be implemented

using EJBs. Some clients spend

millions just to have a J2EE

application. It’s great to have

Vince Bonfanti clear the con-

fusion and wake up companies

so they can save millions on a

J2EE application by simply using Java,

servlets, JSPs, and JDBC instead of expensive

EJBs!

Leo F. Smith
leo_smith@canada.com

J2SE
H

om
e

J2E
E

J2M
E

8 JANUARY 2002

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor and editor-in-chief of XML-Journal. A lead architect with Innovatem,

based in Dallas, he’s well versed in Java,Web, and XML technologies.

ajit@sys-con.com

Java for the New Economy
Welcome to 2002 J2EE. The year

2001 has been a learning
experience for all of us in the

Java technology universe. The lesson has
been a painful one – focus on the business
problem and apply technology to ensure
the right ROI. About a year ago, several
folks were riding out the fantasy of paper
money; options would change their entire
lifestyle. They were going to take a year off
and get back to work when they felt like it.
Their requirements for cars and houses
had taken on a whole new dimension.
They were asking the world to excuse them
while they kissed the sky. Then the bubble
burst, and we’re all back to basics again;
living a fairly good life, but with no drastic
changes. Last year, in anticipation of this
revolution, the industry introduced sever-
al products to support it. These products
are now on the shelves of discount stores.

For the past few years there has been
the dream of a global enterprise driven by
technology. That dream is still alive, but it
has been tempered a bit by reality. The
reality check has impacted all technology
platforms, and Java is no exception. In ret-
rospect, the partitioning of the Java plat-
form into three editions has made it much
more feasible for developers and architects
to justify using the right combination of
Java APIs for the right problem. Selecting
the appropriate mix of Java features out of
a monolithic platform would have been a
formidable task in the current economic
climate. In addition, the efforts of Sun, the
IDE vendors, and the application server
vendors have helped architects define how
Java can be applied in their particular
domain. In that sense, the Pet Store Demo
was much needed in the Java industry.

Let’s look at some of the facets of the
J2EE platform that have been affected. The
core of J2EE is the EJB object model. As I
mentioned in my last editorial (JDJ, Vol. 6,
issue 12), the J2EE application server mar-
ket will suffer as a result of companies

reevaluating their problem domain’s
requirements. Many applications don’t
require the full power of a heavy and com-
plex middle tier. The Web layer, which uses
the Web application server (as opposed to
the J2EE application server) and goes
through homegrown data access modules
to the data source, is becoming an attrac-
tive alternative. JSPs and servlets have
already gained a lot of momentum.
Container providers such as Tomcat and
iPlanet Server are becoming viable alterna-
tives to J2EE application servers. Not to say
that the EJB market has died, only that it’s
being evaluated more judiciously to make
sure it’s the right solution for the problem.

ERP connectivity is a large piece of the
puzzle and the focus of applications has
shifted from global information exchange to
interaction with traditional EIS sources. For
that reason, the Java community is looking
at JCA to provide developers with the means
to get to a variety of ERP sources. At the
same time, ERPs are exposing their core
functionality via Java APIs and Web services.
In 2002, we should see a maturing of the JCA
and alternative connectivity mechanisms.

For the last few years Java international-
ization has been a crucial part of all applica-
tions. Though this continues to be the case,
the requirements for internationalized soft-
ware will probably change. Consequently,
leveraging Java APIs for internationalization
will no longer be the focus. For example, last
year at my company we were looking at a
requirement for supporting an interface in
two languages for the same desktop. This
was for a site that would manage an auction
for two different clients. Since public mar-
ketplaces have fallen out of favor, such
requirements are rare today.

Finally, another example of basic
requirements that have changed are those
associated with security and user manage-
ment. Self-registration and Web access to
corporate applications are not as common
now as they were earlier. Therefore, the

J 2 E E E D I T O R I A LO R
J2

SE
H

om
e

J2
E

E
J2

M
E

J 2 E E I N D E XX

AJIT SAGAR J2EE EDITOR
8

12

38

32

28

20

Java COM

requirements for firewalls and single sign-
on have changed a lot for enterprise appli-
cations. The requirements for integrating
applications into a common security layer
for the intranet are becoming more com-
mon than the ones for the Internet. Again
this impacts which areas of Java will be
leveraged to solve specific problems.

The good news is that the J2EE plat-
form continues to evolve to meet the
needs of the new economy and continues
to be the platform of choice for enterprise
applications.

Java for the New
Economy

For the past few years there
has been the dream of a

global enterprise driven by
technology. That dream is still
alive, but has been tempered

a bit by reality.
by Ajit Sagar

J2EE Testing
An overview of the CTS for

J2EE component developers
by Jonathan Maron

The Key to Superior
EJB Design

Most of the EJB design prac-
tices created so far are

aimed at improving the over-
all performance of

EJB-based applications.
by Boris Lublinsky

J2EE Application Security
Container versus application-

managed security
by Timothy Fisher

Core J2EE Patterns
Presentation-tier patterns and

refactoring and how they
relate to one another

by Dan Malks

Journeyman J2EE
A quick JavaScript lesson

by Charles Arehart

9JANUARY 2002

Java COM

hp
www.hp.com

J 2 E E F A QQ J 2 E E R O A D M A PA

The Java 2 Platform, Enterprise Edition defines
the APIs for building enterprise-level applications.

J2SE.............................v. 1.2

Enterprise JavaBeans API
.....................................v. 1.1

Java Servletsv. 2.2

JavaServer Pages Technology
.....................................v. 1.1

JDBC Standard Extension
.....................................v. 2.0
Java Naming and Directory
Interface APIv. 1.2

RMI/IIOPv. 1.0

Java Transaction API ..v. 1.0

JavaMail APIv. 1.1

Java Messaging Service
.....................................v. 1.0

Useful URLs:
Java 2 Platform, Enterprise Edition
www.java.sun.com/j2ee/

J2EE Blueprints
www.java.sun.com/j2ee/
blueprints

J2EE Technology Center
http://developer.java.sun.com/developer/
products/j2ee/

J2EE Tutorial
http://java.sun.com/j2ee/
tutorial/

A
QWHAT IS THE CURRENT VERSION OF THE JAVA 2 ENTERPRISE EDITION?

The Java platform versioning is quite confusing. This is even more true since Sun split the original plat-
form into three editions. Although it was a good step for decoupling application development, it has led to
more effort in terms of version management.

To answer the question, Sun released Release 1.3 of the enterprise edition (J2EE) on September 24,
2001. This is different from Release 1.3 of the JSE (Java Standard Edition), which was released more than a
year ago. Currently the latest version of J2SE is 1.3.1 and the 1.4 version is in the beta release stage.

There’s a dependency between the editions. J2EE uses the J2SE libraries, therefore the J2EE released
versions need to be compatible with the latest J2SE versions. If you get to the granular APIs, they have their
own versioning. For example, the J2EE Connector Architecture is in Release 1.0 and the Servlet API is in
Release 2.3

Java 2, the current release of the Java platform, is the umbrella that encompasses the latest versions of
all the API editions mentioned above. So the J2ME, the J2SE, and the J2EE APIs are all a part of the Java 2
platform.

CAN AN RMI SERVER RUN ON A JAVA CLIENT?
Yes, it can. The main components of an RMI-based application are an RMI client, RMI server, and RMI reg-

istry. The RMI server can run on a machine that hosts a VM that supports the RMI library. Support for RMI is
required of all Java VMs.

In the traditional client/server scenario, a Java client application connects to a Java server application;
the Java server application does the bulk of data processing and business logic on the server side. If you
aren’t connecting via the HTTP layer, i.e., your connectivity isn’t based on access through a Web server via
servlets/JSPs, you’ll probably use RMI for connectivity. Typically, the RMI server will run as a part of your Java
server application. That is, the implementation of the RMI-based interfaces for your application will be on the
Java server application.

However, this isn’t necessarily true. If you wanted to use RMI for some processing on the Java client and
return the results to the Java client, you can achieve that also. In this case the RMI server will run on the Java
client and the RMI client will run on the Java server. An example of this is when you want to push data to the
Java client and invoke a method on the client to process that data on the Java client-side after receiving it
from the Java server.

IS EJB A SPECIFICATION OR AN ACTUAL JAVA COMPONENT?
Both. The EJB specification defines the design and implementation for Enterprise JavaBeans, which are

Java components. An interesting point to note in documents covering EJBs is that both the singular and plu-
ral word form is used to refer to EJBs. For example, Enterprise JavaBeans is a specification. Enterprise
JavaBeans are Java components.

IS EJBOBJECT A REMOTE OBJECT?
Actually EJBObject (javax.ejb.EJBObject) is an interface that extends java.rmi.Remote interface. Note that

an “EJBObject” interface and an “EJB Object” class (notice the space) are two different entities. An “EJB
Object” class is an actual class that is autogenerated by the application server. The “EJB Object” object is a
delegator object that exposes all the methods of your actual EJB (entity/session/message-driven) implemen-
tation.

When developing an EJB component, the first thing you need to do is define an interface (e.g.,
MyInterface) that extends the javax.ejb.EJBobject interface. In doing so, you’ll add your business logic meth-
ods to the methods already defined in the EJBObject interface. These methods are used by the container to
manipulate your EJB component – methods to find the bean, get a reference to the bean, etc. During deploy-
ment the container will generate a class that provides an implementation for all the methods for MyInterface,
including delegator classes for the methods that you define. This class is your “EJB Object” class implemen-
tation of your “MyInterface” interface.

J2
SE

H
om

e
J2

E
E

J2
M

E

A
Q

A
Q

A
Q

Java COM

10 JANUARY 2002

11JANUARY 2002

Java COM

sharp
www.sharp.com

Java COM

12 JANUARY 2002

Look at the success of the Unix oper-
ating system. A fundamental part of its
success is that it can be written in a
machine-independent language and
ported to multiple hardware platforms.
Thus it provides robust functionality
that can be reused on multiple plat-
forms. However, despite the extensive
similarity between most of the popular
Unix flavors, there’s no guarantee that
an application written for one Unix plat-
form will be portable to another without
making significant changes to the appli-
cation’s code. Thus, it falls short as far as
code reuse is concerned.

A key design goal for the Java plat-
form from its inception was to address
this code portability issue. The “Write
Once, Run Anywhere” mission of Java is
paramount to its success. A developer
no longer needs to code to a specific-
hardware platform; rather, the code is

interpreted and run in a virtual machine
that shields the developer from the
underlying hardware and operating sys-
tem.

The Java 2, Enterprise Edition
(J2EE) platform extends this portability
to a set of enterprise components that
run in a J2EE server. A developer coding
to these APIs now not only has the
assurance that the code will run on any
platform supporting a JVM, but that the
components will be portable across
any container supporting the J2EE
APIs.

Plus, J2EE component developers
can get further assurance that this is
true through the J2EE Compatibility Test
Suite (CTS). The CTS was created to
ascertain the portability of developers’
enterprise components by testing
whether an application server meets
each individual requirement set forth in
the J2EE specifications.

This article presents the types of
tests addressed by the J2EE CTS, the
future of the CTS, and further explores
the benefits as well as the limitations of
the CTS for the J2EE developer.

The CTS
The J2EE CTS includes the tests and

tools necessary to ensure that a J2EE-
based application server works as estab-
lished in the J2EE specifications. It con-
sists of several thousand tests that
explore whether all the required APIs are
present, the necessary services are pro-
vided, and the contracts between the
required components work as expressed
in the specifications. Once the CTS is
successfully completed by a given ven-
dor, that vendor’s application server is

considered J2EE-compatible and
receives the J2EE brand. Being J2EE-
compatible implies that an application
server meets the requirements that
guarantee the stability of a J2EE applica-
tion component in any J2EE environ-
ment.

The CTS tools consist of a GUI con-
sole for executing and monitoring the
tests (see Figure 1) and an associated
testing harness. The testing harness
consists of a portability component that
allows a vendor to plug in a set of class-
es that govern the deployment and
removal of the test applications. In addi-
tion, the harness defers to vendor-spe-
cific classes for the creation of URLs that
access the Web-tier components of a
test. Finally, vendor-supplied porting kit
classes govern JNDI lookups of deployed
test application components.

There are four major server compo-
nents in a J2EE server environment:
application components, containers
(e.g., EJBs, application clients, and
servlet/JSP), resource manager drivers
(e.g., JDBC), and one or more databases.
The J2EE specifications define a set of
standard services that each of these
components must support. Application
components access these services
through APIs provided by the J2EE con-
tainers. The CTS thoroughly exercises
each of these server elements via direct
API tests or via end-to-end integration
tests that may repeat the execution of a
given test in each of the server’s contain-
ers.

The J2EE CTS ensures that the appli-
cation servers abide by the require-
ments set forth in the constituent set of
APIs as shown in Table 1.

What’s It to You?

WRITTEN BY
JONATHAN MARON

J 2 E E T E S T I N G
J2

SE
H

om
e

J2
E

E
J2

M
E

There are two fundamental attributes developers look for in a given
technology to ease their development tasks: extensive functionality and code
reusability.

An overview of the CTS for J2EE component developers

FIGURE 1 GUI console

13JANUARY 2002

Java COM

mongoos
www.mongoos.com

Java COM

14 JANUARY 2002

infrag
www.infrag

gistics
gistics.com

15JANUARY 2002

Java COM

Java COM

16 JANUARY 2002

J 2 E E T E S T I N G

Types of Tests
There are three types of compatibili-

ty tests: signature, API, and end-to-end
or integration. Signature tests are exe-
cuted across all the J2EE technologies to
ensure that the correct APIs are avail-
able to the application components
running in the server. API tests are exe-
cuted for each specific technology to
ascertain whether the application serv-
er meets the requirements of the associ-
ated specification (see Table 2). Finally,
the integration tests examine the inter-
action between various application
components to guarantee that request
invocations are propagated appropri-
ately (e.g., resource references are
obtained successfully, transactions are
propagated).

The API and integration tests are exe-
cuted in a variety of execution contexts
to ensure support for the required appli-
cation components; a given test is
repeated from an application client, an
EJB, a servlet, and a JSP.

J2EE 1.3 CTS
In the recent release of the J2EE

specifications (version 1.3), several
specifications are either modified signif-
icantly or are added to the platform.
These platform modifications resulted
in added complexity in the compatibili-
ty process. Therefore, the J2EE 1.3 CTS
includes newer sets of tests to verify the

compatibility of J2EE 1.3 application
servers, including:

Connectors
Connector tests verify that an applica-

tion server has all the required pieces that
allow any compliant resource adapter (RA)
to be deployed and work correctly. A
resource adapter is a system-level software
driver that’s used by a Java application to
connect to an Enterprise Information
System (EIS) such as CICS or IMS.

EJB 2.0
The EJB 2.0 specification contains

some dramatic changes from earlier
specification versions. The most notable
change is the new container-managed
persistence (CMP) model, the imple-
mentation of which relies on some new
technologies such as the new EJB query
language.

J2EE CTS 1.3 tests are required to
check the conformance of an applica-
tion server with the EJB query lan-
guage requirements of the EJB 2.0
specification. These tests focus on the
runtime execution of the query and
not explicitly on the language syntax.
To be able to accomplish the majority
of the queries needed in the test cases
(derived from the extensive number of
queries defined in the specs), an
abstract persistence schema had to be
implemented. This schema provides

the necessary relationships, depend-
ent objects, and entity bean classes
that provide the necessary support for
those queries.

Other changes include a new bean
type called message-driven beans
(MDBs), home methods independent of
a specific EJB instance, and require-
ments for security and transactional
interoperability. In addition, new Local
and LocalHome interfaces were added
to support the CMP 2.0 model. The
interoperability tests verify that security
propagation, transaction propagation,
remote method invocation, and naming
services can access all work and interop-
erate across multiple J2EE-compliant
platforms.

Java Message Service (JMS)
The tests in this area verify compli-

ance with the JMS functionality
expressed in the EJB 2.0 specification,
the J2EE platform specification version
1.3, and the JMS specification version
1.0.2. These tests are derived from the
requirements to provide message-driv-
en beans with JMS access from the vari-
ous J2EE containers, and the capability
to perform JMS operations in a distrib-
uted transaction. The appropriate JMS
API tests are also included.

JDBC 2.0
The new JDBC tests added in CTS 1.3

verify that an application server imple-
ments the required JDBC 2.0 extensions
expressed in the J2EE 1.3 specifications.

Java Transaction API
The new transaction-related tests in

CTS 1.3 check compliance with the new
CMP model introduced in the EJB 2.0 spec-
ifications. Specifically, tests will be included
to validate access to multiple databases
within the context of a transaction.

Security
Security testing in CTS 1.3 covers the

compatibility requirements in multiple
specifications, including J2EE 1.3, EJB
2.0, Servlet 2.3, and JMS 1.0.2 specifica-
tions. Security coverage for the J2EE
connector architecture is not included
in these tests.

JSP 1.2/Servlet 2.3
The JSP and servlet tests cover the

new functionality related in the new
specifications such as the new tag
library extensions, JSP precompilation,
and servlet filtering.

CTS – What It Is (and Isn’t)
Implementing a J2EE API requires

reading and interpreting the core API

J2
SE

H
om

e
J2

E
E

J2
M

E

TABLE 2 API Tests

API TESTS
Enterprise Java Beans EJB deployment, bean behavior, security, and transactions
Servlets Servlet methods, servlet context interactions
JSP JSP security, JSP implicit object access, servlet context interactions
JTA Transactional propagation, user transaction access
RMI/IIOP Support for remote exceptions, primitive array propagation, transmittal of

arrays of remotes, etc
JDBC Full JDBC 2.0 API support
JNDI Full JNDI 1.2 Support
JavaMail Transmittal of messages, support for utility methods, MIME type support,

multipart message support
JMS Message-driven beans, access to JMS provider

TABLE 1 J2EE CTS for 1.2 and 1.3

TECHNOLOGY J2EE 1.2 J2EE 1.3
Enterprise JavaBeans (EJB) 1.1 2.0
Java Servlets 2.2 2.3
JavaServer Pages (JSP) 1.1 1.2
Java Transaction API (JTA) 1.0 1.0
RMI/IIOP 1.0 1.0
JDBC 2.0 2.0 Extensions
Java Naming and Directory Interface (JNDI) 1.2 N/A
JavaMail 1.2 1.2
Java Message Service (JMS) NA 1.0
Java API for XML Processing (JAXP) NA 1.1
J2EE Connector Architecture NA 1.0
Java Authentication & Authorization Service (JAAS) NA 1.0

17JANUARY 2002

Java COM

sybase
www.sybase.com

Java COM

18 JANUARY 2002

J 2 E E T E S T I N G

specifications. Although the specifica-
tions are for the most part clearly writ-
ten, there are a number of ambiguities.
These ambiguities, which may not
become apparent until multiple imple-
mentations exist, often lead to varying
interpretations on the part of the J2EE
licensees. A process is needed that not
only validates the various implementa-
tions, but also the fundamental inter-
pretations that formed the basis of those
implementations.

The tests included in both the cur-
rent and upcoming versions of the CTS
provide a concrete representation of the
requirements listed in the respective
J2EE specifications. The application
server vendors use these tests to validate
their understanding of the specifica-
tions. A licensee is much more apt to
successfully implement a given technol-
ogy when presented with concrete
examples showing how components
interact with the given API. In addition,
the CTS provides a forum for the ven-
dors to resolve specification ambigui-
ties.

One of the major challenges for the
developers creating the CTS tests is that
at their inception, no actual imp-
lementations existed other than Sun
Microsystems’ J2EE Reference Imp-
lementation (RI). Therefore, the tests
are executed and validated against the
RI.

However, the RI may have some
inherent specification assumptions and
interpretations that are erroneous, lead-
ing to tests that are unsound. If a vendor
disagrees with a given test, a dialogue is
initiated with Sun’s CTS team to resolve
the issue. This process ultimately
resolves whether the test represents a
misinterpretation of the specification, is
flawed and could never be passed, or
whether the vendor’s implementation
does not support the requirement repre-
sented by the test. If a test is deemed
unsound for any of these reasons, it’s
either patched (if removing it would
compromise the compatibility process)
or added to an exclusion list (i.e., a list of
tests that are no longer executed by the
CTS).

The process outlined above pres-
ents the J2EE component developer
with numerous benefits, as well as
some distinct disadvantages. Generally,
a developer can regard the J2EE CTS
process as a standardization effort that
ultimately normalizes the behavior of
his or her application components. For
example, if multiple vendors pass the
same set of tests that address the func-
tions of the servlet context, a developer

can be confident that his or her use of
the servlet context will manifest the
same results, no matter which server is
utilized.

However, the fact that certain tests
have potentially been excluded implies
that the current suite of tests may not
have complete coverage of the J2EE
APIs. Although vendors are obligated by
their participation in the J2EE branding
process to provide a fully compliant
J2EE server, without a thorough and
complete set of tests there’s no guaran-
tee that such compliance has been
achieved.

In addition, certain APIs may not
lend themselves to automated testing
and may require manual intervention.
For example, the Secure Sockets Layer
(SSL) requirements of JavaServer Pages
(JSP) can’t be tested without a fully SSL-
compliant browser invoking the
requests.

It’s also important to note that the
CTS was not created to address the per-
formance, robustness, ease-of-use, or
scalability of a given J2EE application
server. The CTS is a methodical exami-
nation of compliance with the require-
ments of the J2EE specifications. It
makes no attempt to time the tests or
run the tests under a significant client
load (performance metrics will be
addressed by JSR 4 of the JCP – the
ECPerf Benchmark Specification). To
make a judicious choice of an applica-
tion server, a developer should not only
ascertain whether the server is J2EE-
compliant, but also how the server per-
forms, how easily it’s configured, and
whether it’s fault tolerant.

Moving forward, the developers of
the CTS have a substantial challenge to
keep up with the breadth of the J2EE
platform. The overwhelming number of
new and modified requirements will
translate to a need to substantially
increase the number and scope of the
associated tests. Ensuring that all the
requirements are addressed and suffi-
ciently tested will present a major effort.

Finally, developers need to be aware
that the J2EE CTS is not backwards-com-
patible, although most of the API specifi-
cations under the J2EE umbrella do
require old application components to
continue to operate; in other words, an
application server that has any J2EE 1.3
component support can no longer be
considered J2EE 1.2–compatible and
must proceed on the path to achieving
J2EE 1.3 compatibility. To developers,
this means they may be confronted with
releases of application server products
that no longer display the J2EE brand

even if a previous release was officially
compatible. In some cases, J2EE 1.3
platform implementations may be
released with a “beta” or “early release”
label. Generally, developers should rest
assured that the vendors are continuing
to support the J2EE APIs and will release
compatible versions as soon as they can
support the large number of new
requirements in the J2EE specifications.

Summary
The compatibility testing process

encompassed by the J2EE CTS provides
a comprehensive test of an application
server based on the requirements and
design guidelines established in the
J2EE specifications. The CTS also
attempts to provide full coverage of the
strict requirements of each J2EE-related
specification.

For developers, the CTS provides a
significant level of assurance that cod-
ing to the J2EE APIs will yield an appli-
cation that can be deployed on any cer-
tified J2EE application server, so devel-
opers no longer need to learn vendor-
specific proprietary APIs. This also
means that developers have a much
more portable skillset.

The CTS also holds significance for
corporate IT managers, even though the
importance of portable code for people
in these positions is probably negligible.
As a corporate IT manager, if you pur-
chase and deploy a certified J2EE appli-
cation server (that is, one that has
passed the CTS), your “hiring pool” – the
candidates qualified to write and deploy
your applications – increases exponen-
tially. Instead of spending time and
resources looking for developers with
skills specific to one vendor, you need
only look on a candidate’s résumé for
experience coding to J2EE standards. In
addition, the decision as to which appli-
cation server will host the resultant
application can be made parallel to the
development effort; the CTS goes a long
way toward ensuring that the applica-
tion will deploy successfully and run on
a certified J2EE application server.

The CTS isn’t a guarantee of any
kind, nor should it be the only criteria
used to select an application server.
Rather, the CTS is an equalizer; it pro-
vides application server vendors with a
platform from which they can differenti-
ate their products through functionality,
implementations, and so on.

In other words, the CTS isn’t the
answer, but it’s an important part of the
whole equation.

J2
SE

H
om

e
J2

E
E

J2
M

E

jonathan_maron@hp.com

AUTHOR BIO
Jonathan Maron is

a distinguished
engineer with

Hewlett-Packard’s
middleware division.
He was the lead on
HP Bluestone’s J2EE

1.2 compatibility
effort, and also

principal architect of
the Bluestone EJB

1.1 server. Jonathan
is a member of the

JavaSoft EJB and
J2EE expert groups.

19JANUARY 2002

Java COM

object design
www.objectdesign.com

Java COM

Key The e

Decrease network traffic in EJB implementations

W
r

i
t

t
e

n

b
y

B

o
r

i
s

L

u
b

l
i

n
s

k
y

to Superior EJB Design

O
ver the past several years

EJB technology has

entered the software

development

mainstream.

This new level

of recognition

and greater

popularity

brings an

increase in design

activities in the EJB

space, such as best

practices and design patterns.

J2
SE

H
om

e
J2

E
E

J2
M

E

JANUARY 200220

Java COM

Java COM

Most of the EJB design practices created so far are aimed at
improving the overall performance of EJB-based applications.
It turns out that the majority of these practices were taken
directly from object-oriented development (OO) and moved
to the realm of EJB design, without consideration for the
specifics of EJBs. This article emphasizes these specifics and
how they impact the design of EJBs and EJB-based applica-
tions.

What’s So Special About EJBs?
EJB technology was introduced as a distributed compo-

nents technology. The key to understanding it lies in the
meaning of the words distributed and components. Let’s start
with distributed, then examine components.

Distributed Aspects
EJBs are accessed through the Java Remote Method

Invocation (RMI), regardless of whether they’re local or
remote to the client. Although some of the application server
implementations (e.g., WebSphere) optimize local communi-
cations to make them faster, most EJB communications are
still network-based. Although the distributed aspect of com-
munications is transparent to the user in actual method invo-
cations, it has a profound effect on execution performance.
The situation is further complicated by the fact that actual
communication with the bean is based on interception (see
Figure 1) and is implemented in two steps:
1. A request for the bean’s method of execution is first sent to

the container in which the bean resides.
2. The container fulfills the required intermediate steps (secu-

rity, transactions, etc.) and then forwards the request to the
bean.

For the method on the EJB to be invoked, the remote refer-
ence to the home interface must be obtained. This is usually
done through an additional network call to the Java Naming
and Directory Interface (JNDI). The home interface can then
be used to get the actual EJB reference. These operations
introduce additional network calls (see Figure 2).

To summarize, the execution method on the EJB is an
expensive network process. Thus having low granularity
methods on the EJB typically lead to poor performance of the
overall system.

The introduction of local interfaces in EJB 2.0 is one
attempt to improve overall performance. Local interfaces
provide a way for beans in the same container to interact
more efficiently – calls to methods in the local interface don’t
involve RMI. Although the local interfaces represent EJBs in
the same address space and don’t use distributed communi-
cations (e.g., no RMI between colocated beans), the contain-
er is still involved in every interaction to provide the required
intermediary steps. In addition, even in the case of a local
interface, a networking call to the JNDI is required for the
client to obtain a reference to the local home interface,
through which a reference to the local interface can be
resolved. In reality, the specification doesn’t define how ven-
dors must implement local interfaces since they’re only logi-
cal constructs and may not have the equivalent software
counterparts. Additional delays can still be present in local
communications.

The only effective way to improve the overall performance
of EJB-based applications is to minimize the amount of
method invocations, making the communications overhead
negligible compared with the execution time. This can be
achieved only by implementing coarse-grained methods.

21JANUARY 2002

Java COM

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

22 JANUARY 2002

Component Aspects
To define the component characteristics of EJBs we have

to first define what components are. Although component-
based development (CBD) has been around for at least 10
years, they’re still not clearly defined. In general, components
are for composition. Composition enables the reuse of pre-
fabricated “things” (components) by rearranging them into
ever-new and changing composites. Beyond this observation
there’s a lack of consensus on the definition of a component
within the software industry. Microsoft has even invented the
Component Object Model (COM), thus implying in the name
some relationship between components and objects.

The Object Management Group (OMG) has defined dis-
tributed objects and built distributed components on top of
them, leading people to think that components are tightly
linked with objects. Many people assume that components
are nothing more than super objects – a huge misconception.

Components are a software imple-
mentation of business artifacts,
intended to simplify the creation of
business applications. Objects are
software constructs, intended to
simplify code creation; they’re not
necessarily related to the business
content of an application.

Instead of trying to come up with a precise definition for
components, we’ll define the core concepts the industry is
using as a “unified” description of a software component:
• A software implementation of a well-defined application

(business) aspect.
• Should implement a collection of related functions or services;

a relationship is determined by the analysis done from the per-
spective of intended usage. The component should provide a
complete but not necessarily exhaustive set of functions.

• Must be identifiable, meaning it can be addressed by
another component, possibly via a network.

• Should be treated as a whole so that it’s not necessary to
worry about all its pieces. This requires that components
can be individually designed, developed, and deployed.

• Should separate its interface from the implementation used
to support it. A component might be thought of as a “black
box” implementation of the business construct with a well-
defined interface.

• Component-based development (CBD) is not object-oriented
development. This means that CBD does not necessarily require
OO development. CBD can be implemented with equal success
in both OO and procedural languages. CBD is merely a way of
decomposing systems. It’s a way to manage complexity better.

Most people consider the potential for reuse to be the
main driving force for using a CBD approach. To be inde-

pendently deployable a component has to be self-contained –
separated from its environment and other components.
Coupled with the requirement to implement well-defined
application aspects, this provides the widest possibility for
reuse.

Managing complexity is another major advantage of CBD.
Components allow for the natural decomposition of a com-
plex system into smaller chunks, which are usually much sim-
pler and easier to manage. In addition to horizontal partition-
ing, introduced by layered architecture, the adoption of com-
ponents introduces vertical partitioning.

The description of a component provided earlier does not
specify the internal implementation of the component. This
means that in principle, components can be implemented
using lower granularity components (e.g., IBM’s advanced
components for WebSphere). This is similar to the system-
analysis paradigm in which large systems are believed to con-

Java COM

Components allow for the natural
decomposition of a complex system into
smaller chunks, which are usually much
simpler and easier to manage

FIGURE 1 Interception in EJB communications

Remote
call

Container

Local
call

EJBJBEJ

Client

InIn
te

rc
ep

to
r

In
p

e
ce

p
to

FIGURE 2 EJB invocation

Client

JNDIJNDIJNDI

ge
t h

om
e re
tur

n h
om

e

create/find bean

return bean

invoke method eaneaeaaneaaBeaBee

meH mHoom
1

2

3 4

5

“ ”

23JANUARY 2002

Java COM

data direct
www.datadirect.com

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

24 JANUARY 2002

sist of smaller systems, recursively, until the size of the system
becomes manageable.

This recursive definition lets you think about components
as a unifying concept for the software system as a whole as
well as individually. The introduction of components also
forces a multilevel design: the components and their inter-
nals. A compound component is made up of several compo-
nents.

The following is a summary of the benefits of CBD:
• Containment of complexity: Using CBD allows for the nat-

ural decomposition of a system. First, create a high-level
design of the components and their interfaces. Then focus
your development project on one or a small number of
components. This effectively allows for the reduction of
scope and better risk management of every project.
Besides, smaller and better-focused development teams
are usually more productive.

• Opportunity for massive parallel development: Project
boundaries defined around stable component definitions
encourage parallel development in-house and via out-
sourcing. The outsourcing of maintenance may occur as
well, since component providers may supply maintenance
for their components.

• “Black box” component implementation encourages flexi-
bility: A component that supports a well-defined interface
can be substituted with another one that supports either
the same interface or one derived from the original inter-
face. This simplifies modifications to current behavior and
enhances functionality.

• Incremental testing: Components facilitate unit testing and
support progressive build testing.

• Encapsulated components act as firewalls to change: The
ripple effect from change is much smaller, simplifying sys-
tem maintenance.

• Greater consistency in usage:
Components impose a standard
architecture for applications.

What Does This Mean for
EJB Development?

It’s now apparent from our dis-
tributed and component discus-

sion that superior EJB design is very different from OO design.
The problem is that this point was never fully carried across to
developers, many of whom still consider EJB to be a Java class
that adheres to the EJB interface specification. The individual
deployment of EJBs is the only component characteristic sup-
ported and emphasized by the EJB environment.

Simply because of its name, Enterprise JavaBeans, EJB con-
notates a relationship with another popular technology from
Sun Microsystems – JavaBeans. To make things worse and
confuse people even more, many popular Java IDEs (e.g.,
JBuilder) use a single workspace or “bean tab” for both

JavaBean and EJB development, thus suggesting a strong cor-
relation between the two distinct technologies.

One of the examples of such correlations are setter and get-
ter methods, which are required by the JavaBean specification
to access internal variables. Setter and getter methods were
introduced by OO practitioners in order to provide access to
encapsulated object variables and eliminate coupling between
internal representation and external access. This practice was
blindly moved into EJB development, after which time many
additional patterns – most notably the Façade and Value
Object patterns – were introduced to improve design perform-
ance, which was less than optimal to start with.

Experience has proven that using setter and getter meth-
ods in distributed systems is a bad habit. Further, one of the
rules for distributed computing is the introduction of self-
contained method signatures to minimize network traffic
and improve overall performance, which setter and getter
methods rarely embody. The main characteristics of a self-
contained method signature is that it accepts all the vari-
ables required for the method execution and returns all the
results of the execution. In other words, self-contained
methods don’t require additional methods for either setting
required data or retrieving results. Furthermore, because
components are an implementation of application (busi-
ness) artifacts, the methods that they support are supposed
to be meaningful business methods, which setters and get-
ters rarely are.

Our point is that a single EJB must be a large granular piece
of software that’s internally composed of a potentially large
number of Java classes. It has to represent meaningful busi-
ness artifacts and support meaningful business methods. This
is the only feasible way of creating high-performance EJB
applications with reusable beans.

Impact on Systems Design
The implementation of EJB-based components dictates a

new approach to the design of EJB-based systems. It impacts
the separation of responsibilities between session and entity
beans as well as the design of the beans.

Entity beans are often introduced as persistent data com-
ponents (enterprise beans) that know how to persist their
own internal data to a durable storage area such as a data-
base or legacy system. This definition reduces entity beans
mostly to object/relational mapping and often leads to a
design in which entity beans are used purely as a data access
layer (we’ve even seen a comparison of entity beans with seri-
alizable Java objects, which serialize themselves into a data-
base). In this approach entity beans become fairly small, with
a one-to-one correspondence between an entity bean and a
database table that leads to a very low granularity implemen-
tation.

This causes not only increased network communications,
but also negatively impacts database communications due to

Java COM

The implementation of
EJB-based components dictates
a new approach to the design of
EJB-based systems“ ”

25JANUARY 2002

Java COM

compuware
www.compuserve.com

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

26 JANUARY 2002

the increased usage of finder methods. The standard imple-
mentation of a finder method is a database query for the key
value. As the number of entity beans of the same type grows,
this lookup, which is a separate operation from the actual
population of the entity bean, becomes more and more
expensive.

Some implementations, for example, WebLogic, allow for
the optimization of finder methods by combining them with
the load. This alleviates the problem somewhat, but is not part
of the standard. Also, as the variety of entity beans grows, the
amount of finder method invocations also grows, making the
overall application’s performance even worse.

In addition, the granularity of entity beans has a profound
effect on database design. Prior to the introduction of entity
beans (and the componentization of software in general),
database design was performed for the application as a whole.
This usually led to a database design with a strong emphasis
on enforcing data relationships by supporting entity relation-
ships and multiple constraints. With the introduction of enti-
ty beans (e.g., components) the situation has to change.
Because entity beans are reusable, individually deployable
components, the only thing a database can enforce is that the
relationships within the data are supported by the individual
components (beans). Introducing relationships in data that’s
supported by multiple entity beans will break the beans’
autonomy, so it doesn’t seem to be a feasible solution.

The relationship between the data of multiple entity beans
must be implemented on a higher level by the session beans
as part of the internal business-process definition. The lower
the entity beans’ granularity, the less relationships can be
enforced in the database and the greater the programming
effort that’s required to support them.

The last thing to consider here is the fact that business
rules that govern enterprise processing can be divided

into two broad categories:
• Accessing data: These rules govern

how data has to be stored in the
database, operations that can be
done with this data, and possible
constraints. These rules are usually
part of the business artifact and
tend to be very stable and applica-
ble for multiple implementations
both within and between enterpris-
es, and to provide a high potential
for reuse.

• Processing data: These rules govern
business processes within the enter-
prise. They define both the condi-
tions and the sequence of the com-
ponents’ execution. They tend to
change fairly frequently and are
rarely reusable.

Entity beans must incorporate two
major things: persistent (enterprise) data
and business rules that are associated
with the processing of this data. Ideally,
entity beans should be viewed as an
implementation of reusable business arti-
facts and adhere to the following rules:

• Have large granularity, which usually
means they should contain multiple
Java classes and support multiple
database tables.

• Be associated with a certain amount of persistent data, typ-
ically multiple database tables, one of which should define
the primary key for the whole bean.

• Support meaningful business methods and encapsulate
business rules to access the data.

A session bean should represent the work being performed
for the client code that’s calling it. Session beans are business-
process components that implement business rules for pro-
cessing data.

Business processes implemented by session beans within
the EJB environment should define business and correspon-
ding database transactions. It’s not advisable to use a client’s
transactions in the EJB environment due to potential problems
with the long-running transactions that can cause database
lockup. Entity beans that participate in the transaction are
effectively transactional resources due to their stateful nature.
In reality, however, application server vendors don’t treat them
as such and basically “clone” entity beans when more than one
user wants to access the same information. They rely on the
underlying database to lock and resolve access appropriately.
Although this approach greatly improves performance, it pro-
vides the potential for database lockup.

At the beginning of a transaction the container invokes a
load method on the entity bean that’s performing the data-
base read, thus acquiring read lock on the set of tables. At this
point another clone of the same bean can acquire the same
data and obtain another read lock. After that first transaction
has ended, the container invokes a save method on the first
bean that tries to write data back to the database. The data-
base would attempt to promote the lock to the write opera-
tion, but would not be able to because there’s another read
lock for the same data. As a result a database deadlock would
occur.

The severity of this situation can vary, depending on the
locking mechanism of the database in use and the duration of
the transaction. Either way, it’s not a desirable response.

Summary
Our main stipulation in this article is that EJB design is

very different from OO design and it’s impossible to blindly
apply OO design principles to EJBs.

A simple example is designing for reuse. In OO systems the
main driver is to reuse code constructs, and the best results
can be achieved by creating objects of very low granularity. In
component-based development and thus EJB development,
the main driver is to create reusable business artifacts, thus
components must be of fairly large granularity.

The creation of coarse EJB components that consist of
multiple Java classes will eliminate much of the network traf-
fic occurring in today’s EJB implementations. It will also allow
for two levels of reuse: traditional OO reuse on the Java class-
es level that provides a component’s internal functionality,
and the component’s reuse on the EJB level.

Acknowledgment
Special thanks to Michael Farrell Jr. and Tung Mansfield for

their contributions to this article.

AUTHOR BIO
Boris Lublinsky, regional director of technology at Inventa Technologies, oversees engagements in
EAI and B2B integration and component-based development of large-scale Web applications.
He has over 20 years of experience in software engineering and technical architecture.

blublinsky@hotmail.com

Java COM

K

O

27JANUARY 2002

Java COM

sitraka
www.sitraka.com

Java COM

28 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

J2EE Application Security

J2EE introduced a powerful security
infrastructure for applications that
greatly assists developers and enterpris-
es in securing their applications. When
used properly, this infrastructure takes
much of the burden of securing the
application off of the developers, leaving
them free to concentrate on implement-
ing business logic.

The J2EE container–security services
primarily address the security require-
ments of authentication and authoriza-
tion. Authentication is the mechanism by
which callers and service providers prove
to each other that they are acting on behalf
of specific users or systems. Authorization
mechanisms provide control over what
resources an identified user or system has
access to. In simple terms, authentication
provides the answer to “Who are you?”
And authorization provides the answer to
“What can you access?”

Authentication
The J2EE model supports several

methods for authenticating users. These
are basic, digest, form-based, and certifi-
cate-based authentications. In basic
authentication, the Web server prompts
the user for a user name and password,
which is then transmitted to the server.
Unless an SSL session has been estab-
lished, this information is sent in the
clear, so it’s not very secure. Digest
authentication improves the security a
bit by sending a digest of the user name
and password along with some session-
specific information to the server instead
of transmitting the clear text password.

Both of these methods result in a stan-
dard dialog being presented to the user
for entering user name and password.

Form-based authentication allows
the developer to create a custom log-in
page using a form. Like basic authenti-
cation, the user name and password are
sent in the clear, unless an SSL session
has been established.

Finally, the most secure method of
authentication is the certificate-based
method. In this method, both client and
server use X.509 certificates to prove their

identities. This authentication always
occurs over an SSL-protected channel.

The Web component deployment
descriptor specifies which resources are
protected, thus requiring user authenti-
cation. The actual step of authenticating
the user is usually accomplished by
looking the user up in a corporate direc-
tory or database.

After successfully proving a user’s or
service’s identity, an authentication con-
text is established. This allows the user
or service to be authenticated to other
entities – without repeating the authen-
tication lookup step. A user may also
delegate its authentication context to a
component, allowing that component
to call another component while imper-
sonating the original caller.

The authentication mechanism is
configured in the Web component
deployment descriptor. Listing 1 shows
an example of configuring digest
authentication. Listing 2 shows an
example of configuring form-based
authentication. The error page specified
in Listing 2 is a page presented to the
user when authentication fails.

Authorization
J2EE employs a permissions-based

authorization model. Each protected
resource is listed in the deployment
descriptor, along with a list of roles that
are able to access the resource. These
roles are mapped to specific users by
the application deployer. Static pages,
JSPs, and servlets are protected at the
URL level and can be further protected
down to GET or POST methods.
Protection of EJBs can be specified
down to specific-class methods.
Specifying authorization information in
the deployment descriptor is referred to
as declarative authorization. Embedd-
ing authorization logic directly into an
application is called programmatic
authorization. The J2EE model sup-
ports both of these authorization mod-
els. Unless requirements demand it,
declarative authorization is generally
the preferred method.

Declarative Authorization
The authorization rules specified in

the deployment descriptor are enforced
by the J2EE container. This method of
providing authorization frees the devel-
oper from worrying about implement-
ing authorization, which is generally a
good thing because it’s an easy area for
developers to introduce bugs that can
lead to large security holes in the appli-
cation. Applications that rely solely on
this form of declarative authorization
are sometimes referred to as security-
unaware applications. The application
code itself has no knowledge of the
security that is wrapping it. Declarative
authorization is a container-managed
security service.

Listing 3 shows an example of applying
declarative authorization to a servlet in
the deployment descriptor. In this exam-
ple, all servlets and other resources in the
“restricted” directory will be protected.
Only users assigned the role
“AuthorizedUser” will be granted access to
these resources. Listing 4 shows declara-
tive authorization being applied to an EJB.
This example applies protection to the
UserInformation bean. Users assigned the
“admin” role are granted rights to access
all methods. Users assigned the “cus-
tomer” role are granted the right to access
the getDetails() method.

Programmatic Authorization
The J2EE model also provides sup-

port for extending the authorization
model through programmatic authori-
zation. There are four key methods
developers can use. They are:
• isCallerInRole() and getCallerPrinciple()

for use by EJB code
• isUserInRole() and getUserPrinciple()

for use by Web components

These methods are typically used to
provide finer-grain access control than
what can be achieved through pure
declarative authorization. Applications
that employ programmatic authorization
are referred to as security-aware applica-
tions. Programmatic security is also

WRITTEN BY
TIMOTHY FISHER

When designing Web-based applications, security is a
critical component. Before the advent of J2EE, to implement a
secure distributed application you had to code all of the security
directly into the application.

Container vs application-managed security

A U T H E N T I C A T I O N & A U T H O R I Z A T I O N

29JANUARY 2002

Java COM

rational
www.rational.com

A U T H E N T I C A T I O N & A U T H O R I Z A T I O N

tim@securitydeveloper.com

referred to as application-managed secu-
rity.

A good example of where program-
matic authorization is necessary is in
protecting access to user account
objects. Consider an application that
manages some type of user accounts.

Let’s say the developer designates
two roles: one for users and the other for
administrators. The users should have
access only to their own account. The
administrators should have access to all
accounts. There is no way to enforce this
policy using declarative authorization
alone. This stems from the fact that
access rules specified in the deployment
descriptor are class-based, not instance-
based. Specific users or roles can’t be
granted access to specific instances of
an object while denying them access to
other instances of an object.

A solution is to use programmatic
authorization. In the account object, the
developer would use the isUserInRole()

method to determine if the user was an
administrator. If so, the user would auto-
matically be granted access to the
account. If not, the developer would then
use the method getUserPrinciple() and
compare that to the account owner. If they
are the same, access would be granted.

Implementing security inside each
application greatly increases the chance
of introducing a vulnerability that can
be exposed by hackers. Programmatic
authorization should be used only when
the requirements can’t be met through
declarative authorization.

Confidentiality and Integrity
So far, I’ve covered the topics of authen-

tication and authorization. The other
important security requirement is message
protection, specifically, employing the con-
cepts of confidentiality and integrity.

Integrity ensures that a message has-
n’t been accidentally or intentionally
modified. Confidentiality ensures the
privacy of a message. Both of these ser-
vices are provided through cryptograph-
ic techniques.

The J2EE security model doesn’t pro-
vide a great deal of flexibility or support
in this area. In the deployment descrip-
tor, resources can be designated as
requiring confidentiality. This permits
them to be served only over SSL connec-
tions. Going beyond the pure J2EE secu-
rity model, there’s a great deal of support
in Java for providing programmatic pro-
tection of messages.

Divided Responsibilities
One of the goals of the J2EE security

model is to lessen the burden on the
application developer for securing appli-
cations. To assist in achieving this goal,
the J2EE model recognizes the three dis-
tinct roles played in bringing an applica-
tion from concept to deployment. The
roles are component provider, applica-
tion assembler, and deployer.

Slight variations on these role names
appear in various publications. The
component provider is the developer,
the person actually writing the Java
code. The application assembler takes
several components (beans, EJBs, JSPs,
etc.) and assembles them into a com-
plete application. Finally, the deployer is
responsible for actually deploying the
application into the production enter-
prise environment.

The component provider imple-
ments all programmatic security. In
doing so, they define generic security
role names for providing access control
functionality. The application assembler
defines logical roles, specifies which
resources should be protected, and

which roles are required to access those
resources. The deployer then is respon-
sible for mapping the logical roles to the
specific enterprise environment. It
should be noted that one individual or
team may play multiple roles in bringing
an application to production. It’s not
unusual for the component provider
and the application assembler roles to
be performed by the same team.

Container-Managed Security
Implementing modern security mech-

anisms such as confidentiality, authenti-
cation, and authorization requires a great
deal of expertise in the security domain.
Most application developers don’t have
the expertise needed to successfully
implement these security services. This
makes creating applications that are secu-
rity-aware all the more challenging.

A better idea is to rely on the appli-
cation-server vendors to implement the
tough security services – and have your
application make use of these contain-
er-managed services. This eliminates
the necessity of having a security devel-
opment engineer on every Web applica-
tion project.

Having said this, the requirements
must be the ultimate driver for whether
or not programmatic security should be
used. Some requirements, such as the
account example given in this article,
can’t be satisfied using container-man-
aged security alone. It should be noted
that this example and the methods pro-
vided by J2EE specifically focus on
authorization. It’s best to always rely on
container-managed authentication.
Embedding authentication logic into
each application creates a hard to man-
age authentication policy that has a high
potential for security vulnerabilities.

Another advantage of relying on con-
tainermanaged services is that as authen-
tication technology is upgraded within an
enterprise, the applications don’t have to
be rewritten. Using programmatic
authentication would require massive
application rewrites if enterprise authen-
tication technology were to change.

Relying predominantly on container-
managed security also allows you to main-
tain a common security infrastructure as
opposed to sprinkling security throughout
all your Web applications. Container-
managed security services allow for the
centralization of security policies in a cen-
tral repository. When using container-
managed security, a change in security
policy requires changes in application
configuration, as opposed to coding
changes in your applications.

<web-app>
<login-config>
<auth-method>BASIC|DIGEST</auth-method>
<realm-name>test</realm-name>

</login-config>
</web-app>

<web-app>
<login-config>

<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>login.jsp</form-login-page>
<form-error-page>error.jsp</form-error-page>

</form-login-config>
</login-config>
</web-app>

<web-app>
...
<security-constraint>
<web-resource-collection>
<web-resource-name>

Secure Content
</web-resource-name>
<url-pattern>/restricted/*</ url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>AuthorizedUser</role-name>

</auth-constraint>
</security-constraint>
...
<security-role>
<description>
The role required to access restricted content
</description>
<role-name>AuthorizedUser</role-name>
</security-role>
</web-app>

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>UserInformation</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>customer</role-name>
<method>
<ejb-name>UserInformation</ejb-name>
<method-name>getDetails</method-name>

</method>
</method-permission>

Listing 4

Listing 3

Listing 2

Listing 1

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

30 JANUARY 2002

AUTHOR BIO
Timothy Fisher is a

consultant for
Spherion Technology
in Detroit, and has

been involved in
information-security

technology for nearly
10 years. He worked

in information
security at Motorola,

Cyclone Commerce,
and Pricewaterhouse

Coopers.

31JANUARY 2002

Java COM

quintessence
systems

www.quintessence.com

P A T T E R N S

Core J2EE Patterns

WRITTEN BY
DAN MALKS

Patterns are expert solutions – recurring designs that have
proven effective over time. This month’s article will provide you
with a bit more detail on the subject.

When applying patterns to the
presentation tier, we address the fol-
lowing:
• Pre- and postprocessing of a request

and/or response
• Request handling, navigation, and

dispatch
• View preparation and creation
• Application partitioning

In other words, how do we handle a
Web request, managing any necessary
data access and generating pre-
sentation content for the user? How
might we transform the incoming or
outgoing stream? How do we deter-
mine what processing to perform to
fulfill this request? What view should
be used to service the request and how
do we generate it? What are the logical
abstractions and how do we design
and decompose our software to take
advantage of these abstractions?

Six presentation tier patterns are
documented in the Core J2EE Patterns
Catalog. The patterns and their tier

categorizations are shown in Table 1.
Because of the focus of this column,
we’ll describe just one of the presenta-
tion patterns in detail. First I want to
provide some context on how the
presentation tier patterns fit within a
common J2EE architecture, starting
with a basic description of a system.

When a client makes a Web request
for a particular resource, the request is
processed, a view is generated, and a
result is returned to the client. To provide
more detail, we can define several logical
components and subcomponents of a
typical Web-based architecture:
• Request handler:

– Pre- and postprocessing
– Request processing
– Command processing

• Navigation and dispatch:
– Navigation resolution
– Request dispatching

• View processor:
– View preparation
– View creation

These components and subcom-
ponents are shown visually in Figure
1. Let’s have a look at the Intercepting
Filter pattern, which addresses issues
in the request-handling portion of the
architecture, as outlined above and in
the figure.

Intercepting Filter
The Intercepting Filter pattern

documents issues relating to prepro-
cessing and postprocessing a Web

request. Here are some common
examples of preprocessing:
• Decrypting an input stream: The

incoming data may have been
encrypted for security purposes.

• Decompressing a stream: The
incoming stream may have been
compressed for more efficient
transfer over the network.

• Translating various encoding
schemes to a common format:
Multiple encoding schemes require
different handling. If each encoding
is translated to a common format,
the core request-handling mecha-
nism can treat every request simi-
larly. Some common examples of

J2
SE

H
om

e
J2

E
E

J2
M

E

Presentation tier patterns and refactoring

2

Every other month in this column we
(Deepak Alur, John Crupi, Dan Malks, and other
architects from the Sun Java Center
(www.sun.com/service/sunps/jdc) will discuss
various topics from our book, Core J2EE Patterns:
Best Practices and Strategies (Alur, Crupi, Malks,
Prentice Hall/Sun Press 2001). These topics
include the 15 J2EE patterns in our catalog,
design strategies, bad practices, refactorings,
and pattern-driven design in J2EE technology.

TABLE 1 J2EE Patterns by tier

TIER PATTERN NAME
Presentation Tier Intercepting Filter

Front Controller
View Helper
Composite View
Service to Worker
Dispatcher View

Business Tier Business Delegate
Value Object
Session Facade
Composite Entity
Value Object Assembler
Value List Handler
Service Locator

Integration Tier Data Access Object
Service Activator

Java COM

32 JANUARY 2002

Due to an unfortunate postproduction printing error, this article, which
first appeared in the October issue of JDJ (Vol. 6, issue 10), was not pub-
lished in its entirety. As we are committed to bringing you the best content
possible, we couldn’t let this article slip by. Therefore we have included the
complete article here, and please accept our apologies.

33JANUARY 2002

Java COM

borland
www.borland.com

encoding schemes are:
– application/x-www-form-urlencoded
– multipart/form-data

• Performing authentication or
authorization: Authentication and
authorization may be performed
either in a filter or as part of the

core processing flow, typically as
part of the controller.

What constitutes postprocess-
ing of a request? Here are some
common examples:
• Encrypting an output stream:

The outgoing data may be
encrypted for security purposes.

• Compressing a stream: The out-
going stream may be com-
pressed for more efficient trans-
fer over the network.

• Transformation of data for dif-
ferent clients: Transformation
into HTML, XML, or WML.

Additionally, one of the forces
that motivates us to consider this

pattern is the desire to add and
remove these processing compo-
nents independently – independ-
ent of other filtering components
and of the underlying core process-
ing that fulfills the client’s request.

Let’s look at the class diagram
(see Figure 2) that describes this
pattern’s structure. In the figure
the actual resource that is the tar-
get of the client request, such as a
servlet or JavaServer Page technol-
ogy, is represented by the Target
class. The individual pre- or post-
processing components that per-
form filtering functionality, as
described above, are shown as
Filter One, Filter Two, and Filter
Three. One important thing to
notice in this diagram is that
there’s no direct association
between any of the filters and the
target resource. Additionally,
there’s no direct association from
any filter to one of the other filters.

This is an important point,
since it clarifies that the filters are

loosely coupled both to the target
resource and to other filters. This
allows the filters to be easily added
and removed unobtrusively, as men-
tioned.

Filters are an excellent way to layer
functionality onto your system, pro-

viding pluggable behavior that can be
used to decorate core request pro-
cessing. Another benefit of using this
pattern is that it promotes the reuse of
these various filtering components
across different requests, in different
combinations, and even in different
applications.

There are several implementation
strategies for this pattern, the most pow-
erful of which leverages the standard fil-
tering supported in the Servlet specifi-
cation 2.3. Vendor support for this revi-
sion of the specification will be wide-
spread in the not too distant future.

Listings 1 and 2 are excerpts from
the Standard Filter Strategy code
example in the book. (The listings are
available on the JDJ Web site,

www.sys-con.com/java/sourcec.cfm.)
The example describes using filters to
preprocess requests, checking their
encoding schemes, and translating
these different schemes to a common
format. The common format is to
store all request states within request
attributes. Subsequently, any control
code that checks for incoming values
will get these values from request
attributes, regardless of the original
encoding.

Figure 3 is the sequence diagram that
shows the basic collaboration of the
objects in the example. Note that in this
implementation the role of the
FilterManager from the class diagram is
fulfilled by the Container in the sequence
diagram. We hope this provides you with
a basic understanding of the benefits and
some implementing options for the
Intercepting Filter pattern.

Refactoring
There’s more than one way to

approach any task. This is as true with
software development as with any-
thing else. So when I tell you that peo-
ple approach the task of developing
software in different ways, you cer-
tainly won’t be surprised. Some folks
feel that most design work should pre-
cede implementation, while others
like to jump in, write some code, and

P A T T E R N S
J2

SE
H

om
e

J2
E

E
J2

M
E

FIGURE 1 Request-handling architecture

FIGURE 2 Intercepting Filter class diagram

FIGURE 3 Filter sequence diagram

1:Request
1.1:Create

1.2:Do Filter 1.2.1:Do Filter

1.2.2:Do Filter

1.3:Forward Request

1.2.1.1:[form-urlencoded]
Translate Param To Attributes

1.2.2.1:[multipart/form-data]
Parse and Convert Data
To Attributes

Client Container

FilterChain

StandardEncoderFilter MultiPartEncoderFilter Controller

The fact is that wherever there is

coding, there may be refactoring“
”

Java COM

34 JANUARY 2002

35JANUARY 2002

Java COM

sprint soft
www.sprintsoft.com

start to think about how these bits of
implementation fit together. The dif-
ference is basically that of top-down
design versus bottom-up design.

Refactoring applies to either
approach, though it’s typically applied
in an environment where there is an
understanding that design is spread
across the life of the project. That said,
the fact is that wherever there is cod-
ing, there may be refactoring. Martin
Fowler, in his great book Refactoring:
Improving the Design of Existing Code
(Addison-Wesley), describes refactor-
ing as “improving the design of the
code after it has been written.” His
book identifies many common design
flaws and describes the incremental
coding changes that result in improved
design. The issues are typically general
and not specific to any particular area
of Java or software development.

The lion’s share of Fowler’s
book is devoted to what
he calls “small refac-
torings,” meaning
the design changes
are at a very low
level, each involv-
ing several dis-
crete coding mod-
ifications, such as
adding a parameter
to a method. A small
portion of the book,
coauthored by Kent Beck,
is devoted to “big refactorings,”
which exist at a higher level of
abstraction and have steps that aren’t
as well defined or as concrete.

In our book we include some J2EE
technology–specific refactorings, describ-
ing opportunities to improve the design

of a J2EE technology-based
system and the relevant steps
involved. The format and style
is based on that in Fowler’s
book, which we find extremely
valuable. Based on Fowler and
Beck’s definition, the J2EE
refactorings included in our
book might be called “medium
refactorings” based on their
level of abstraction. The refac-
torings are listed in Table 2, cat-
egorized by tier.

We find these refactor-
ings to be excellent com-
panions to the patterns and
bad practices described in
the rest of our book. In fact,
you can think about the
refactorings as often provid-
ing the steps that help guide

the developer from a less opti-
mal solution, or bad practice, to a
more optimal one, suggested by a pat-
tern.

In a future article we’ll provide
more information on these refactor-
ings and their relationship to the pat-
terns in the catalog. We’ll also go into
greater detail on the presentation,
business, and integration tiers, as well
as communication across these tiers.

Thank you for reading, and please e-
mail us at CoreJ2EEPatterns@sun.com
to provide feedback on this article and
to suggest other topics of interest.

AUTHOR BIO
Dan Malks, a senior Java architect with Sun Microsystems, is
currently focusing on distributed, service-based designs,
patterns, and implementations. He has developed in a variety
of environments, including Smalltalk and Java, while focusing
on OO technologies. Dan has published articles on Java in
leading industry periodicals, and holds bachelor’s and master’s

degrees in computer science.

Copyright 2001 Sun Microsystems, Inc. All Rights
Reserved. Sun, Sun Microsystems, the Sun logo,

Java, J2EE, Java Center, and JavaServer Pages
are trademarks or registered trademarks of

Sun Microsystems, Inc., in the United States
and other countries. Sun Microsystems,
Inc., may have intellectual property rights
relating to implementations of the tech-
nology described in this article, and no
license of any kind is given here. Please
visit www.sun.com/software/communi-

tysource/ for licensing information.
The information in this article

(the “information”) is provided “as is,” for
discussion purposes only. All express or

implied conditions, representations, and war-
ranties, including any implied warranty of mer-

chantability, fitness for a particular purpose, or non-
infringement, are disclaimed, except to the extent that such dis-

claimers are held to be legally invalid. Neither Sun nor the authors
make any representations, warranties, or guaranties as to the
quality, suitability, truth, accuracy, or completeness of the infor-
mation. Neither Sun nor the authors shall be liable for any dam-
ages suffered as a result of using, modifying, contributing, copy-
ing, or distributing the information.

P A T T E R N S
J2

SE
H

om
e

J2
E

E
J2

M
E

dan.malks@sun.com

TABLE 2 Refactorings

PRESENTATION TIER REFACTORINGS
Introduce a controller
Introduce synchronizer token
Localize disparate logic
Hide presentation tier-specific details from the business tier
Remove conversions from view
Hide resource from a client

BUSINESS AND INTEGRATION TIER REFACTORINGS
Wrap entities with session
Introduce business delegate
Merge session beans
Eliminate inter-entity bean communication
Move business logic to session

GENERAL REFACTORINGS
Separate data access code
Refactor architecture by tiers
Use a connection pool

Portions of

this article contain

excerpts with permission from

Core J2EE Patterns by Deepak Alur,

John Crupi, and Dan Malks (ISBN 0-

13-064884-1) Copyright 2001. Sun

Microsystems, Inc.

Java COM

36 JANUARY 2002

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
EDITOR

NANCY VALENTINE nancy@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
LOUIS F. CUFFARI louis@sys-con.com
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com

A C C O U N T I N G
CHEIF FINANCIAL OFFICER

BRUCE KANNER bruce@sys-con.com
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE

JAN BRAIDECH jan@sys-con.com
ACCOUNTS PAYABLE

JOAN LAROSE joan@sys-con.com
ACCOUNTING CLERK

BETTY WHITE betty@sys-con.com
S Y S - C O N E V E N T S

VICE PRESIDENT, SYS-CON EVENTS
CATHY WALTERS cathyw@sys-con.com

CONFERENCE MANAGER
MICHAEL LYNCH mike@sys-con.com

SALES EXECUTIVES, EXHIBITS
MICHAEL PESICK michael@sys-con.com

RICHARD ANDERSON richard@sys-con.com
SHOW ASSISTANT

NIKI PANAGOPOULOS niki@sys-con.com
REGISTRATION ASSISTANT

JACLYN REDMOND jaclyn@sys-con.com
C U S T O M E R R E L A T I O N S / J D J S T O R E

MANAGER, CUSTOMER RELATIONS/JDJ STORE
ANTHONY D. SPITZER tony@sys-con.com

CUSTOMER SERVICE LIAISON
PATTI DELVECCHIO patti@sys-con.com

37JANUARY 2002

Java COM

iona
www.iona.com

Java COM

38 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Getting Focus()ed –
and a Quick JavaScript Lesson

J O U R N E Y M A N J 2 E E

For both audiences there’s still value
in learning at least a minimal amount
about client-side scripting. Even learn-
ing about just one feature – setting the
cursor on the first form field you may
have – can bring measurable benefit to
your site visitors.

In this month’s Journeyman J2EE,
we depart from pure J2EE topics to
address this subject, which should be
understood by any Web application
developer. If you’re a newcomer to
JavaScript, I’ll provide more than
enough to get started.

Where’s Your Focus?
Here’s the motivation for the problem

I want to solve: you visit a Web site that
offers a form inviting you to enter some
input. No big deal – we see them all the
time, right? Now, how do you get to the
point of entering data into that first field?

Do you use your mouse to move the
cursor to that first data entry area? Or
are you a keyboard maven, like me, in
which case you prefer to tab to such a
field? The problem is you may have to
hit the tab key several times before you
can enter data.

Indeed, it’s typical to visit sites with
navigational toolbars across the top
and/or left side of the form, forcing you
to tab dozens and dozens of times. It’s an
annoyance, especially if visitors to your
site know the site designer could have
easily prevented the problem.

If you think that’s being pedantic, con-
sider a simpler example. If you show users
a page that clearly is expecting them to
enter some data (perhaps a user ID or a
search argument, etc.) before proceeding,
why not put the cursor right on the data
entry field rather than forcing them to use
the mouse or keyboard to get there. It’s a
usability issue.

There’s an incredibly simple solu-
tion. Just the tiniest bit of JavaScript is

needed, a single line of code, really. This
article shows how to use it and also lays
the most basic foundation for using
JavaScript, if you’re new to it.

Laying the Foundation
The technique we’re talking about

involves putting the “keyboard focus” on
whatever form input field – a text, pass-
word, or textarea box or even a radio,
checkbox, or select field – you want the
user to enter data into first. The solution
is the JavaScript “focus” method.

The JavaScript language is available to
any Web page designer on nearly all Web
browsers. (Microsoft calls its version of
the language JScript. They’re nearly the
same, especially for the purposes of this
article.) It’s a scripting language that can
be used to add features to your Web page
that aren’t otherwise provided by HTML.

This article shows you the simplest
application of this focus method. It’s
pretty straightforward and should work
fine in most instances. JavaScript is
widely supported by most browsers
now, and this particular feature is sup-
ported identically in both Netscape’s
and Microsoft’s versions of the language,
so there’s no need to worry about it
breaking on different browsers.

Gimme the Goods
We need to put this method in some

JavaScript code inside our page. If you
haven’t coded JavaScript on your pages,
there are several ways to do this. You can
embed the code in a pair of <SCRIPT> tags
(and even then you have choices about
where those tags are placed) or you can
place it in special attributes of HTML tags
(such as ONLOAD within a <BODY> tag).

Let’s take a simple example in the first of
those two forms. We can use the JavaScript
alert() method to cause a message to be dis-
played to the user in a popup box. To do
that, we could use the following code:

<SCRIPT LANGUAGE="JavaScript"

TYPE="text/javascript">

alert('Hello World');

</SCRIPT>

Put that code almost anywhere in an
HTML page and when you view that page
in a browser, you’ll see a message pop up:
“Hello World.” Try it. We can use the same
approach to specify JavaScript code to
indicate that we want to place the focus
on a particular field. We’re almost there.

Focus on Forms
The focus() method operates on

form fields. One of the many powers of
JavaScript is that not only can we refer to
(display, test) all the elements of our
page (all the forms, form fields, indeed
every tag and its contents and attrib-
utes), we can manipulate them as well.

How do we specify that we intend to
work with some part of our page, such as
a particular form field? Most of you
know that you can give a name to a form
field, and in JSP/servlets that will
become the name of an attribute in the
request scope on the form’s action page.
In our JavaScript we can use that same
name to refer to the form field to give it
focus. If we have an input field for a
“UserId” that should be entered, the
HTML would be:

<FORM ->

-

Enter Userid: <INPUT TYPE="text"

Name="UserId">

-

</FORM>

Of course, the <FORM> tag would be
specified completely and other form field
information would be provided both
before and after this input field. However,
it’s important to know that this does indeed
(and must) occur within a <FORM> tag.

WRITTEN BY
CHARLES

AREHART

Many new J2EE developers get caught up in focusing on
the details and nuances of servlets and JSPs and, as a result, may
not learn how to leverage JavaScript. Some may even dismiss it as
too much hassle, given cross-browser compatibility issues.

A win-win situation

39JANUARY 2002

Java COM

altoweb
www.altoweb.com

Java COM

40 JANUARY 2002

J O U R N E Y M A N J 2 E E
J2

SE
H

om
e

J2
E

E
J2

M
E

ibm
new

One reason it’s important (besides being
the way HTML is coded!) is that when we
want to refer to a particular element within a
Web page from within JavaScript, we need to
refer to it in the form of its relationship to the
entire page. This input form field, “UserId”,
occurs inside of a form. On a simple level we
might refer to it as form.UserId.

This isn’t technically correct, however,
since it’s possible to have more than one form
in a page. Indeed, there are rules that describe
how to refer to elements on a page within
JavaScript. It’s called the Document Object
Model (DOM). In any case, we need to indi-
cate the specific form in which the field
occurs.

What’s in a Name?
There are two ways to do this: we can refer

to the form by name or by indicating the rela-
tive location of the form on the page. Which is
appropriate for you depends on your situa-
tion. If you’ve specified a NAME attribute on
the <FORM> tag, you’d use that name.

If we had specified NAME="Login" on the
<FORM> tag, we would refer to the form field
as Login.Userid. But we’re not done yet. The
form itself occurs within the Web page, and
while it might not seem necessary, the con-
tents of the page are considered to be within
the “document” on the page (again, recall the
“Document” Object Model). We finally have
the complete means by which to refer to the
field: document.Login.UserId.

Before leaving this subject, let’s clarify that
if you haven’t named your form, you can still
refer to it by indicating the relative location of
the form within the document. There’s a spe-
cial “forms” array in every Web page docu-
ment, so if you have only one form in yours,
you would indicate it as the first form.

Unfortunately, even this can trip you up
because in JavaScript (as in Java) you start
counting lists of elements at 0 rather than 1.
So the way to refer to your form field (assum-
ing it’s within the first or only form on the
page) would be:

document.forms[0].UserId

Notice that this isn’t used as “form[0]” but
as “forms[0]”. It’s a subtle point, but if it’s not
specified correctly, you’ll receive an error.

We’re on the Case
Indeed, it’s also critically important to

remember that JavaScript is case-sensitive.
The case you choose when naming some-
thing must be the case you use when refer-
ring to it later with JavaScript.

If we were to refer to our form field as
Document.Forms[0].UserId, for example,
we’d get an error. JavaScript expects us to refer
to both the “document” and “forms” elements
as all lowercase.

Similarly, since we named the form field
UserId, we must refer to it exactly that way. If
we referred to it as document.forms[0].userid,
or even document.forms[0].Userid, we’d
receive an error either way.

Forcing the Focus()
To set the focus we use the focus method

just like a reference to an object’s method in
Java. To set the focus for our form field called
“UserId”, we might specify it as:

document.forms[0].UserId.focus()

That’s about it. There’s nothing to be spec-
ified within the parentheses. (Notice that the
word focus is also all lowercase.) This state-
ment, when executed, will cause the named
field in the named form to receive the focus
when the page is displayed to the user. In
other words, the cursor will be resting on that
field when the page is loaded.

Our final challenge is to decide where and
how to specify this statement. Of course, it’s
JavaScript and must be specified to be execut-
ed as such. We mentioned earlier that this
could be done by way of the <SCRIPT> tag.
The following code will cause the focus to be
placed on our UserId field:

<SCRIPT LANGUAGE="JavaScript"

TYPE="text/javascript">

<!--

document.forms[0].UserId.focus()

//-->

</SCRIPT>

If only it were this easy. Well, it is – almost! You
just need to make sure the statement is executed
after the form has been loaded. In JavaScript it’s
inappropriate to refer to a variable (or form field,
as it were) before it’s been defined. In this case,
with this approach to executing the statement,
we need to be sure not to put this code on our
page prior to the form itself.

There are other ways to specify JavaScript
within a page. Besides the <SCRIPT> tag, we
can also use the event-handler attributes of
other tags. For instance, we could also force
the JavaScript to execute only after the entire
page has loaded. Some may know that there’s
an attribute for the BODY tag called ONLOAD
that does just what we need, causing whatev-
er statements it executes to be run only after
the page has loaded. Since the form is within
the page, this is indeed another solution to
our problem.

Fortunately, we can easily specify our
JavaScript statement (the statement itself, not
the <SCRIPT> tags) by placing it in the BODY
tag’s ONLOAD attribute, as in:

<BODY

ONLOAD="javascript:document.forms[0].

UserId.focus()">

41JANUARY 2002

Java COM

ibm
www.ibm.com

J O U R N E Y M A N J 2 E E

Pretty nifty! (The “javascript:” direc-
tive preceding the statement is not usu-
ally required, but it’s the formal method
of specifying JavaScript within an attri-
bute like ONLOAD.)

Experienced developers may prefer
yet another approach: creating a func-
tion instead and calling that function in
the ONLOAD.

But Will It Fail?
You should have no trouble if you:

1. Specify the JavaScript statement
using one of the two appropriate
approaches.

2. Refer to the form field using the nam-
ing references indicated.

3. Remember to specify the proper case
for the naming reference.

4. Ensure that the statement occurs only
after the form has been loaded.

There are a couple of other edge cases
to be aware of, however. First, some folks
use a single page to serve as both the
form and action page (loaded from with-
in the same JSP template, for instance).
That’s fine and can be a powerful way to
reuse lots of code, but be careful: if you
leave JavaScript code referring to the
form field on the page, but the output of
the action page (POST) processing does-
n’t show the form (because you’re show-
ing the results of processing the form, not
the form), you’ll get an error. This is par-
ticularly risky when using the ONLOAD
approach, because you may not think of
it as serving both the form and action
page when coding the page.

In a similar vein, and equally tricky
in some situations, you don’t want to
include the JavaScript statement on the
page if the form field to which it’s refer-
ring isn’t included in the page. With
dynamically built pages as in JSP and
servlets, this isn’t as strange as it might
seem. Forewarned is forearmed.

What if a user’s browser simply doesn’t
support JavaScript? There’s very good news.

With the <SCRIPT> tag approach
described earlier, you may notice that
just inside the opening and closing

<SCRIPT> tags are HTML comment tags.
This is a standard JavaScript approach
that guarantees that if the browser does-
n’t support the <SCRIPT> tag (which it
will simply ignore), it will also ignore the
JavaScript statements inside the script
and comment tags. However, browsers
that support JavaScript still execute the
statements inside the comment tags.

With the ONLOAD approach as well,
browsers that ignore JavaScript also
won’t recognize JavaScript-related attri-
butes. The ONLOAD attribute is purely
and simply for executing JavaScript and
hence is ignored by non-JS browsers. By
association, the value specified for that
attribute (our JavaScript statement in the
second approach) is also ignored.

Some Caveats
Should you go ahead and add the

focus method for the first input field of
the forms in all your pages? Well, first it
may not be appropriate to the interface.
On some pages the form and its input
fields may not really be the focus of the
page. Consider a page that happens to
have a search field on it, such as
http://industry.java.sun.com/solu-
tions/ (see Figure 1).

If you look closely at the top right cor-
ner, there is indeed a “form” on this page
for searching the site, but it’s definitely
not the focus of the page. There’s also a
search field to “Find a Solution” on the
right-hand side. Should we put the focus
in the first form field? The second? Either?
Maybe neither. If you put it on the second,
which may seem a focus of the page, key-
board users would find that tabbing once
wouldn’t take them to the top nav bar but
instead to the links under that search
field. That’s not good usability, either.

Another reason not to blindly set the
focus on any first form on the page is if
the form doesn’t appear at the top of the
page. If we did that, an unintended result
would be that the screen would be
scrolled down when displayed, so that
the field with focus (that form input field)
was visible. This may cause the top of the
page to be hidden from the user.
Remember, too, that users often have dif-
ferent (and lower resolution) monitors
than developers, increasing the chances
of this problem developing. It can also
happen if the users don’t maximize their
screen when displaying your page.

When would it be appropriate to put
the focus on a field? When the form is
clearly the focus of the page. Going back to
the previous example at Sun’s Solutions
Marketplace, consider the link under that
“Find a Solution” button, labeled “Enroll
Your Company.” On the page that will be
shown, it prompts for Company Name.

That’s clearly the focus of the page, so put-
ting the focus on that field would make
sense (sadly, they’re not setting the focus
using this approach as of this writing).

If you visit www.altavista.com, a pop-
ular search engine, you’ll see that search-
ing is clearly the focus of the page, and
they do indeed use the focus method so
that you can start typing search criteria
as soon as the page appears.

Another natural example, and one
that nearly all developers end up dealing
with, is a login page that’s presented to
enter a site or access secured areas. If
the user can’t proceed without entering
a user ID/password and the prompt for
this is the only reason the page is being
presented, there’s little reason not to set
the focus on the UserId field.

Afterword: Using SCRIPTJ in JRun Studio
There’s one last useful trick that will

be of interest to users of JRun Studio (a
similar feature may exist in other IDEs). It
also works in its sister Macromedia prod-
ucts, ColdFusion Studio and HomeSite.

Remember the <SCRIPT> tags offered
earlier with the HTML comment charac-
ters specified within them – I mentioned
that these are a standard set of tags to be
used for all JavaScript entered within a
page (other than that entered within
other tag attributes like ONLOAD).

You could hope to remember to
enter that properly formatted set of
basic tags:

<SCRIPT LANGUAGE="JavaScript"

TYPE="text/javascript">

<!--

//-->

or you could take advantage of a nifty
shortcut in Studio: simply type SCRIPTJ,
press CTRL-J (the control key and J), and
watch as Studio converts that into the set
of tags offered above. The cursor is even
sitting there within the paired tags waiting
for you to type in your JavaScript. (Hey,
now there’s a great use of cursor focus!)

Summary
Using the focus method is a win-win

that should be used in many Web forms.
JavaScript is ignored in browsers that don’t
support it or have it turned off, and being
a JavaScript 1.0 element it works even in
Netscape 2 and IE 3. Plus, it really is just a
single statement of JavaScript code in
nearly all cases. Now do you see why I find
it so frustrating when a site doesn’t use it?
I hope newcomers to JavaScript have also
learned a few things.

J2
SE

H
om

e
J2

E
E

J2
M

E

carehart@systemanage.com

Java COM

42 JANUARY 2002

FIGURE 1 Web site with search field

AUTHOR BIO
Charles Arehart is a
20-year IT veteran

with experience
spanning a range of

technologies, including
large scale database
systems. For the past
four years he’s been

an active trainer,
writer, and consultant

in enterprise Web
application

development. He
contributes to several

resources, provides
on-site coaching and
consultation, and is a
frequent speaker at

user groups
throughout the

country.

43JANUARY 2002

Java COM

bea
www.bea.com

keith.brown@sys-con.com

Happy New Year! I trust you had a
good festive break...not drinking
or eating too much. Who am I?

Good question. My name is Keith Brown
and I’m the new J2SE editor of Java
Developer’s Journal. As this is the first
issue of the new year, our editor-in-chief
felt it was the perfect time for me to kick
off and bring my flavor of Java to you each
month.

My professional history is varied, so
the least said about that the better (only
joking). I’m a seasoned developer with
nearly ten years of software engineering
behind me, five of them spent working
with this beautiful language we call Java.
I’ve been involved with Java at many lev-
els, mainly at the client-side, as opposed
to the trendier jet set who specialize at the
server-side. When Alan first spoke to me
regarding this role, I was excited about his
vision for the magazine. Since it aligned
with my own beliefs regarding software
engineering, I felt I could take this role and
do it justice.

As the newest member of the team, I
would like to spend a little time discussing
my own personal views on the state of the
industry, and where we can work together
to make sure we are suitably armed with
the tools to implement solutions for the
next wave of problems that are winging
their way toward us.

Did you catch last month’s Guest
Editorial from Eric Shapiro? Eric managed
to encapsulate the very mood of the J2SE
movement. As he said, people are quick to
automatically dismiss Java to the server-
side, automatically reaching for infamous
phrases such as EJB, JSP, and JMS. But Java
is more than just server-side – look at our
J2ME section if you have any doubts.

I’m here to help reinforce the case for
Java outside of the server world. Swing has
had a bad rep to deal with; in fact, the his-
tory of GUIs in Java isn’t a pretty one.
When Java first burst onto the scene we
were stuck with AWT. When Windows and
even X-Windows had all these fantastic
APIs, Java developers were definitely at the
bottom of the heap with AWT. But it has to
be said that the efforts of developers to
produce beautiful client-side applications
were admirable considering the tools they
had to work with.

There was hope. We were told of a GUI
API that would allow us to get to the tools
we needed to produce production-quali-
ty, client-side applications, a GUI that
would offer the flexibility and speed of
any native platform-specific tool, a GUI to
finally bring Java to the masses. Wow –
sounded too good to be true.

Sadly it was. What finally arrived was
something that was definitely a far cry
from the pipe dream we were all living in.
To say Swing was a disappointment to
some would be a bit of an understate-
ment. The system was buggy, slow, and
very inflexible to porting. Maybe it was
rushed out the door too quickly and peo-
ple expected too much from it initially.
After all, the APIs it was competing
against had been seasoned over many
years with a huge amount of testing and
development invested in them. Swing was
finding its feet with a very demanding
audience.

I think that’s one of the reasons why
Java’s popularity grew so quickly at the
server-side. Technologies such as servlets
and then JSPs made it very easy to build
front ends to applications that could be
quickly and easily deployed to the masses

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

Java Beyond the Server:
It’s Time to Really Swing

AUTHOR BIO
Keith Brown has been involved with Java for many years.When he’s not coding up client solutions for a European Java company,

he can be found lurking in the corridors of conferences all around the world.

KEITH BROWN J2SE EDITOR

Java COM

44 JANUARY 2002

J 2 S E I N D E XX

Java Beyond the Server
Swing has never man-

aged to quite get there, but
after a number of years in
development, the time has
come to start delivering on

some of its promises.
by Keith Brown

Using Regular
Expressions in J2SE 1.4

Even a regex neophyte should
have no trouble with the
pattern and the matcher.

by David Weller

Using Assertions in Java
Building confidence in your code

by Jonathan Amsterdam

Synchronizing Java
Threads on a Shared

Resource with
Multiple Views

A simple and elegant solution
by Vishal Goenka

Evolutive Java
Applications

Enable functionality-driven
software architecture

by Alvaro Schwarzberg

44

66

60

52

46

without worrying about extra downloads
– in other words, the very premise that
Swing was hoping to solve, but never
quite got there due to its size. Even today,
if you surf to a page that has a Swing
applet, the browser goes into a bit of a fit;
if you’re really unlucky, you’ll have just
incurred a 10MB download, worse case.

Swing has never managed to quite get
there, but after a number of years in
development, the time has come to start
delivering on some of its promises.

45JANUARY 2002

Java COM

dice
www.dice.com

Java COM

46 JANUARY 2002

Using Regular Expressions in J2SE 1.4

R E G E X

This article focuses on Sun’s imple-
mentation of a regular expression pack-
age, java.util.regex. In addition, this arti-
cle also assumes you have some famil-
iarity with regular expressions (if not,
see the sidebar for a brief introduction).
Each regular expression used here, how-
ever, is fully described, so even a regex
neophyte should have no trouble.

The regex package is divided into
two major packages: pattern and match-
er. Before going into the details of these
packages, it’s important to understand
their relationship.

A pattern contains a specific regular
expression that’s created by compiling a
regex string. If the string doesn’t com-
pile, the pattern isn’t valid and a
PatternSyntaxException is thrown. You
should always have a try/catch block
when compiling regexes to catch this
exception. For reasons of brevity, excep-
tion handling is excluded from the
examples here.

A matcher is an object that does the
real “grunt work.” It holds a reference to
the input stream (of type CharSequence,
like String or StringBuffer) and keeps all
sorts of stateful information about the
results of a pattern search, string
start/end locations, etc. A matcher
object can only be created through an
instance of a pattern.

The most basic creation sequence is:
• Compile a regex: If it’s valid, it will

return a pattern, otherwise it will
throw a PatternSyntaxException.

• Create a matcher: Give the pattern
instance an input set to match
against.

Once you have a matcher, there are
three Boolean functions you can use to
determine if the input conforms to the
pattern. Of the three you will typically

use, the “find()” method returns a
Boolean the moment it matches the
regex. The matcher will then also
remember where the last match was and
will pick up from that point with the
next “find()” method (for those of you
familiar with Perl, this behavior is simi-
lar to the “g” modifier at the end of your
regex).

Our first example performs the basic
creation sequence mentioned above,
then calls “find()” repeatedly to count

the number of times the word “fish”
exists in the input sequence (see Listing
1).

While the example itself isn’t inter-
esting, the above “code pattern” occurs
frequently when writing software that
uses the regex packages. Make a point to
remember it!

Now we’ll see how we can replace a
matched pattern with something else.
There are two mechanisms to change an
input string: appendReplacement() and

WRITTEN BY
DAVID WELLER

Aregular expression (regex) is an essential part of soft-
ware development. Indeed, the programming language Perl is, in
effect, a language written around a regex parser.

Even a regex neophyte should have
no trouble with the pattern

and the matcherJ2
SE

H
om

e
J2

E
E

J2
M

E

WHAT IS A REGULAR EXPRESSION?
These next few paragraphs will not come close to doing justice to the full scope and power of

regular expressions, so let me first recommend Jeffrey Friedl’s amazing Mastering Regular
Expressions (O’Reilly). This book contains everything you need to know about the mysterious regex.

Many developers, particularly in the UNIX world, are familiar with the tool “grep” (which stands
for Global Regular Expression Print). I’ve found, however, that many grep users are also unfamiliar
with what real regular expressions are.

Simply put, regular expressions are a way to define a pattern that can match a sequence of
characters. The most basic regex is a literal string, like “cat”. It will match every time it sees the
sequence “cat” in the input. Moving up in complexity, the period (.) will match any single charac-
ter, so the regex “c.t” will match sequences, such as “cat”, “cot”, “c2t”, and even “c t”. If we want-
ed to limit the choices, we could use a selection range instead, which is a sequence of characters
enclosed in brackets. So the regex, “c[aou]t” would match “cat”, “cot”, or “cut”.

You can also find special characters using “metacharacters”. For instance, the metacharacters
\n and \t will match a newline and tab, respectively. This brings us to an interesting point: if the
backslash is used to signal a metacharacter, how do you search for a backslash? Simple. To search
the input for a character that would be considered a special character, simply “escape” the char-
acter with a backslash. The regex “\\\.” would search the input for the character sequence “\.”.

Every character or character group (part of a regex surrounded by parentheses) can be modi-
fied by “quantifiers”. The quantifier “*” means “zero or more times”, and the quantifier “?” means
“once or not at all”. So the regex “c([aou]*)t” will match “cat”, “coot”, “couauoaaoot”, etc. The
regex “coo?t” will match “cot” or “coot” only.

Let’s wrap up by listing a short table of special metacharacters that are frequently seen in reg-
ular expressions:

^ beginning of a line
$ end of a line
\d a digit
\D a nondigit
\s a whitespace character (space, tab, newline, etc.)
\S a nonwhitespace character.

47JANUARY 2002

Java COM

altova
www.altova.com

Java COM

48 JANUARY 2002

R E G E X

appendTail(). Understanding how these
two work together is tricky, but master-
ing this relationship is critical. Let’s look
at how the two work together to perform
a simple replacement.

Let’s use the pattern “fish” and the
input “The fish in the hat”. We want to
replace the pattern with “cat”. We first
create a pattern and matcher, then do a
find. When the find returns true, we cre-
ate a new StringBuffer to hold our mod-
ified string (never modify the matcher’s
input string directly!), then begin chang-
ing our output string.

At this point, it’s important to
remember that our Matcher instance,
“m”, now knows the start and end point
of the most recent match. It also knows
the end point of the previous match
(which is “0” if there is no previous
match). When appendReplacement is
called, it uses this information to per-
form the following two steps:
1. It appends everything from the end of

the previous match-up to the begin-
ning of the first match (in our exam-
ple, that’s simply “The”) to the output
string.

2. It then appends the replacement
string onto the output string. Our out-
put string is now “The cat”.

Finally, we call appendTail, which
replaces the remainder of the original
input string (“in the hat”) to the output
string, yielding the expected result (see
Listing 2).

The preceding example is only useful
for single replacements, which isn’t very
realistic. Let’s modify this example to
replace all occurrences of a pattern by
using a while loop (see Listing 3).

Conveniently, the matcher class has
a “replaceAll” method that will do exact-
ly what the preceding code will do. It is,
however, only useful for simple string
replacements.

Now that you know the basics of
searching and replacing, let’s look at the
more powerful features of the regex
package – using groups and quantifiers.

The simple pattern, “one.*two”, is
typically read (comprehended) as: “The
sequence ‘one’, followed by any number
of any kind of character, followed by

‘two’”. Because we have used the
“greedy” quantifier, “*”, this regex will
get the largest match it can find. Be care-
ful using quantifiers, as they can yield
strange results. Mastery of quantifiers,
however, is essential to writing good
regular expressions. Jeffrey Friedl’s
book, Mastering Regular Expressions,
(O’Reilly) contains numerous examples
of the many different forms of quanti-
fiers, and I recommend reading it to
learn more.

Back to our example, calling find
would result in the matcher “marking”
these places (noted by the arrows):
“_one if by Java, two_ if by C”. This is
interesting if we want to replace the
entire regex, but what if we want to
replace only the characters between the
“one” and the “two”? This is where
grouping comes in.

Grouping is the most powerful fea-
ture of the regex package because it
allows us to manipulate sets of sub-
strings. If we change the regex to include
the grouping markers (open/closed
parentheses), we then create nested
groups. These groups start with the
number 1; group(0) is always the entire
matched pattern. If we used the regex
“one(.*)two”, we would generate a
“group list” in our match.

Let’s look at a simple example now,
as seen in Listing 4.

Note that the for loop uses “<=”,
rather than the traditional “<”.

Our results are:

>java ShowGroups

Group(0) is "one if by Java, two"

Group(1) is " if by Java, "

Let’s wrap this up by looking at how
you would write a simple XML-style tag
parser.

First, study the regex string in Figure
1. This regex introduces a “backrefer-
ence”, which is when a group is self-ref-
erenced in a regex. In this example, the
first group (which matches a tag name)
is later used as a backreference,
expressed as a backslash followed by a
group number. This is a powerful and
useful feature of regular expressions.

The first group is the first “(.*)” that

you see. It is used to initially “guess” that
it sees a tag. The regex, however, says it’s
not a tag unless that same string is on
the tail end, which is where you see the
backreference “\1”.

At this point, you should notice a
strange quirk of Java. In normal regex
strings, the backreference would just
look like “\1”, but since escaped charac-
ters are interpreted by the Java compiler
(e.g., “\n”), we must use a “double back-
slash” to signify a regex “escape”. You
must test your Java regex strings careful-
ly, as this single quirk can cause you
hours of grief (to which this author can
testify!).

Now let’s look at the code. It’s really a
simple example of recursion. The
findTag method is simply handed an ini-
tial input string. When the pattern
matches, everything inside the tag
boundaries (Group 2) is again handed to
findTag, and the parsing starts again
(see Listing 5).

When we run the program, we get:

>java tagParser

Found tag: bold, inner string =

<italic>bold-italic</italic>

Found tag: italic, inner string =

bold-italic

I encourage you to look at other
regular expression packages if you
intend to do extremely complex regex
work. The most notable example is the
ORO package freely available through
the Apache Jakarta Project (http://
jakarta.apache.org/oro). It’s more full-
featured than the JDK regex package,
but the usage is similar. Sadly, Sun
decided not to implement the regex
package through interfaces, making it
(currently) impossible to freely switch
between the JDK and ORO regex pack-
ages. On the brighter side, the Sun
regex package is full-featured enough
for places where a typical regex engine
is needed.

In conclusion, I hope I’ve helped you
to understand how to use the power of
the regex classes. The graceful combina-
tion of the pattern and matcher classes
helps maintain a separation of con-
cerns. This addition to Java has been
long overdue. Have fun, and happy pars-
ing!

Acknowledgment
The author would like to acknowl-

edge the gracious feedback of Roger
Moore of Valtech Technologies (Dallas)
and Tom Wood of Valtech Tech-
nologies (Houston).

J2
SE

H
om

e
J2

E
E

J2
M

E

AUTHOR BIO
David Weller is a

principal managing
consultant at Valtech
Technologies, Inc., an

international
consulting firm
specializing in

.NET/J2EE/Unified
Process development,

skills transfer, and
training. He holds a

computer science
degree from the

University of Houston
at Clear Lake. david.weller@valtech.com

Group 1 Group 2 Backreference to
Group 1

“<(.*) >(.*) </\\1>”
FIGURE 1 Regex string

49JANUARY 2002

Java COM

insession
www.insession.com

Java COM

50 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

import java.io.*;
import java.util.*;
import java.util.regex.*;
public final class Simple {

public static final void main(String args[]) {
Pattern p = Pattern.compile("fish");
Matcher m = p.matcher("one fish, two fish, red fish,
blue fish");
int count = 0;
while (m.find()) {

count++;
}
System.out.println("Count = " + count);

}
}

Running this program yields:
D:\projects\regex>java simple
Count = 4

D:\projects\regex>java Replace
The cat in the hat

Here’s the code itself:
import java.io.*;
import java.util.*;
import java.util.regex.*;
public final class Replace {

public static final void main(String args[]) {
Pattern p = Pattern.compile("fish");
Matcher m = p.matcher("The fish in the hat");
StringBuffer output = new StringBuffer();
if (m.find()) {

m.appendReplacement(output, "cat");
m.appendTail(output);

}
System.out.println(output.toString());

}
}

import java.io.*;
import java.util.*;
import java.util.regex.*;
public final class ReplaceAll {

public static final void main(String args[]) {
Pattern p = Pattern.compile("fish");
Matcher m = p.matcher("One fish, two fish, red fish,
blue fish");

StringBuffer output = new StringBuffer();
while (m.find()) {

m.appendReplacement(output, "cat");
}
m.appendTail(output);
System.out.println(output.toString());

}
}

import java.io.*;
import java.util.*;
import java.util.regex.*;
public final class ShowGroups {

public static final void main(String args[]) {
StringBuffer input = new StringBuffer("one if by Java,
two if by C");
Pattern p = Pattern.compile("one(.*)two");
Matcher m = p.matcher(input);
while (m.find()) {

for(int i=0;i <= m.groupCount(); i++){
System.out.println("Group("+i+") is \"" +

m.group(i) + "\"");
}

}
}

}

import java.io.*;
import java.util.*;
import java.util.regex.*;
public final class tagParser {

public static final void main(String args[]) {
Pattern p = Pattern.compile("<(.*)>(.*)</\\1>");
String input = "This is <bold><italic>bold-italic</
italic></bold>";
findTag(p,input);

}

private static final void findTag(Pattern p, String in) {
Matcher m = p.matcher(in);
boolean result = m.find();
while (result) {

System.out.println("Found tag: " + m.group(1) + ",
inner string = " + m.group(2));

findTag(p,m.group(2));
result = m.find();

}
}

}

Listing 5

Listing 4

Listing 3

Listing 2

Listing 1

int
www.int.com

51JANUARY 2002

Java COM

loox
www.loox.com

UUsing Assertions
in Java

Building confidence in your code

ritten by Jonathan Amsterdam

01110010010111001001

1010

Java’s new assertion mechanism, a welcome addition to the

programmers to increase the robustness of their code by
sprinkling it liberally with assert statements. The new
assertion feature is easy to use, but any language

poorly. Here I’ ’s assertion
facility, and how not to misuse it.

Java COM

Using assertions couldn’t be easier. Anywhere you can put
a statement in Java, you can now write

assert boolExpr;

where boolExpr is any Boolean expression. If the expression
is true, execution continues as if nothing happened. If it’s
false, an exception is thrown. You can disable assertions at
runtime if you wish, effectively removing them from your
code.

Why Use Assertions?
Assertions are a cheap and easy way of building confi-

dence in your code. When you write an assertion, you’re
enabling the machine to check your beliefs about your pro-
gram. You write the assertion thinking that it’s true, but as you
well know, not all of your beliefs about your code are true – if
they were, you wouldn’t have any bugs. Assertions can help
uncover bugs early on.

For example, here’s a bit of code that makes a choice based
on the remainder of dividing n by 3:

if (n % 3 == 0) {

…

} else if (n % 3 == 1) {

…

} else {

assert n % 3 == 2;

...

}

Now obviously, n % 3 == 2 in the final else of this state-
ment, since the remainder when you divide a number by 3 is
either 0, 1, or 2. So there’s no need to do an explicit test. But
these new assert statements are easy to write and you can
always disable them, so you add one just for kicks. That will
turn out to have been a wise choice when the code is run
with a negative value of n. The Java % operator, like the mod
operator of most programming languages, gives negative
results when its left operand is negative: -5 % 3 is -2, not 2.
The assertion will fail, the program will stop, and you can
easily correct both the code and your false belief about how
% works.

Here’s another example from some recent code of my own:

TransactionEntry te = (TransactionEntry)

assoc.getEntry(key);

if (te == null) {

te = new TransactionEntry(key, dur);

assoc.put(key, te);

} else {

assert te.getState() == te.REMOVED;

te.recreate(dur, session);

}

What this code is about doesn’t matter. As you can tell just
from the control flow, I firmly believe that if assoc.-
getEntry(key) returns a nonnull TransactionEntry, then that
TransactionEntry must be in the REMOVED state. This is a
desired property of my system and is enforced elsewhere (or so
I believe), but is far from obvious in this piece of code. The

J2
SE

H
om

e
J2

E
E

J2
M

E

JANUARY 200252

53JANUARY 2002

Java COM

parasoft
www.parasoft.com

sertions are a cheap and easy

ay of building confidence

in your code

AAA““

Java COM

assertion both documents my belief and confirms it at runtime,
making me a little more confident that my system is correct.

The Details
Having seen why assertions are a good idea, let’s look at

Java’s assertion facility in more detail.
The Java language has a new statement, the assert state-

ment, which takes one of two forms. The simpler form is the
one introduced earlier:

assert boolExpr;

If the expression evaluates to true, nothing happens, but if
it evaluates to false, an AssertionError is thrown. The new
class AssertionError is a subclass of Error.

If you want to include an additional information string with
the AssertionError, provide it after the Boolean expression:

assert a.length != b.length:

"array lengths not equal";

The second expression can in fact be of any type, and will
be converted to a string in the usual way.

Assertions are disabled by default in Sun’s JVM. You can
selectively enable them by class loader, package, or class by
calling some new methods of the ClassLoader class, or more
commonly via command-line arguments when you invoke
the Java Virtual Machine. The command-line arguments aren’t
part of the spec, but in Sun’s implementation you would use
the -ea and -da options to enable and disable assertions,
respectively. For example, to enable all assertions except for
those in the com.astrel.util package, you would write

java -ea -da:com.astrel.util MyApp

If you then wanted to reenable assertions for the Heap
class within com.astrel.util, you could write

java -ea -da:com.astrel.util \

-ea:com.astrel.util.Heap MyApp

Although the ClassLoader methods can be invoked at any
time, they’ll only affect classes loaded after the call. In other
words, the status of a class’s assertions – enabled or disabled
– is determined once and for all when the class is loaded.

No method will tell you whether the current class has assertions
enabled, but you can easily determine this with the following code:

boolean enabled = false;

assert enabled = true;

Here the assert statement is used only for its side effect. If
assertions are enabled, the Boolean will be set to true; other-
wise it will remain false.

That’s all there is to using assertions. Now some guidelines
on using them well.

Tips on Using Assertions
• Disable assertions for deployment.

Some people say that assertions should never be disabled.
Disabling assertions for deployment, as the saying goes, is like
throwing the lifeboats overboard just before the ship leaves
port. I agree in principle, but disagree on a technicality. The
main benefit of Java assertions is the ability to disable them. If
you don’t plan on disabling them, you shouldn’t be using
them. I do believe, and fervently, that your code should per-
form as much internal checking as is feasible, and that these
checks should not be removed. But such checks shouldn’t be
assertions, in the narrow technical sense of being written with
Java’s assert statement.

For the remainder of this article, I’ll use the word “check” to
mean any self-validating bit of code that shouldn’t be disabled.

• Make it possible to reenable assertions at any time.
Although your deployed program will run with assertions

disabled, it should be possible even for the end user to reen-
able them when necessary by restarting the application with
an appropriate flag. The assertion facility is designed so that
assertions can remain in the deployed class file and yet still
have no impact on running time – disabled assertions can be
removed by the class loader or JIT compiler. (That’s why you
can’t change the assertion status of a class dynamically.) Thus
your application need only provide access to the appropriate
JVM command-line option in order to enable assertions in the
field. By providing this ability, you give yourself another tool
for catching bugs in the wild, under conditions that you may
not be able to duplicate on your own.

• Don’t use side effects in assertions.
Since assertions will be disabled in deployed code, they

should not change the state of the system – otherwise, the sys-
tem would behave differently when deployed. (It may behave
differently anyway, because disabling an assertion may affect
the timing of multithreaded programs, but hopefully your
design is robust to withstand such minor timing changes.)
There are a couple of techniques that violate this rule: one,
which detects whether assertions are enabled, we saw above;
another I’ll describe later when I discuss postconditions.

• Assertions should be expensive.
In other words, either the Boolean expression should take a

long time to execute, or the cumulative time of executing the
assertion in typical runs of your program should be large. If the
assertion doesn’t slow you down, why bother disabling it? Or to
put it another way: write cheap tests as checks, not assertions.
Those checks will help you catch bugs in the deployed system
without impacting performance. You can’t beat that.

Of course, if assertions as a whole are too expensive, your
program will run too slowly to test, and you’ll test less fre-
quently. In this way, assertions can actually decrease the
robustness of your code. Here is where the ability to selective-
ly disable assertions comes in handy. When a class or package
is first coming up to speed, enable assertions in it to gain con-

J2
SE

H
om

e
J2

E
E

J2
M

E

54 JANUARY 2002

”

55JANUARY 2002

Java COM

introware
www.introware.com

e main benefit of Java assertions
s the ability to disable them.
f you don’t plan on disabling them,

you shouldn’t be using them

TTT“

Java COM

fidence in its correctness. When the program becomes too
slow to test frequently, disable assertions in the older, well-
tested parts of the system.

• If you can recover from it, don’t assert it.
Assertions throw an error instead of an exception because

their purpose is to crash your program. (The whole reason
behind having separate Error and Exception classes is that
Errors indicate faults from which you shouldn’t try to recover.)
So catching an AssertionError and trying to continue is a sure
sign that you should be doing a check, not an assertion. It’s
reasonable to catch an AssertionError, but only to log or oth-
erwise process it before your program exits. In other words,
any such catch should end by rethrowing the error.

• Don’t mention assertions in documentation.
An assertion is an implementation choice, like the name of

a local variable; whether it’s enabled, disabled, or exists at all
should in no way affect the contract of a method. (But feel free
to boast to your co-workers that you’ve made your code more
robust by “asserting the heck out of it.”)

• Don’t use assertions for argument checking.
If your method’s contract claims it will check for null argu-

ments, then you should do just that – check, not assert. There
are two problems with using an assertion. First, the assertion
will be disabled in production runs of the program, so your
method won’t be up to spec. (That really is like throwing the
lifeboats overboard.) Second, the assert statement throws the
wrong kind of thing, an AssertionError. If an argument is null,
you should be throwing a NullPointerException; if it’s general-
ly invalid, an IllegalArgumentException; and so on.

If you’re tempted to use assert anyway because you can
write the brief

assert arg != null;

in place of the verbose

if (arg == null)

throw new NullPointerException();

then how about writing a helper method? In fact, let’s postu-
late a class full of them:

Check.isNotNull(arg);

will throw a NullPointerException, while

Check.legalArg(arg.length > 0);

would throw IllegalArgumentException. (Two-argument ver-
sions of these methods would take message strings to be
included in the exception, just like the assert statement.)
Concerned about the overhead of an extra method call? Don’t
be: these Check methods are static and small, which means
that a good JIT compiler could easily inline them. (On my sys-

tem, running JDK 1.3 with the HotSpot Client VM, there’s no
measurable time difference between calling a Check method
and writing the same code inline.)

All that being said, if checking an argument is expensive,
consider using an assertion instead (and don’t claim in the
documentation that the argument is checked). Another time
to consider an assertion over a check is when you control all
calls to the method – for example, when the method is private.
Since you can guarantee that all calls to the method are cor-
rect, you don’t need a check, but an assertion couldn’t hurt.

• Use assertions for preconditions and postconditions.
A precondition is something your method assumes to be

true on entry. Restrictions on arguments are one kind of pre-
condition, but not the only kind: your method might require
that other parts of the system be in a certain state before it can
validly proceed. Once you’ve identified a precondition and
decided that you don’t want to turn it into a check (presum-
ably because it’s too expensive), asserting it is a good idea.

One kind of precondition is a class invariant – a statement
about a class or its instances that should be true before and
after each of the class’s methods. For example, say you are
writing a Heap class that implements a binary heap – a bina-
ry tree with the property that the value stored in each node is
no less that the values stored in its children. This property is a
class invariant. (Heaps are useful for building priority queues,
among other things.)

At the beginning of the method that adds a new item to the
heap, you expect that the heap property is true. Indeed, the
standard algorithm for adding an item to a binary heap won’t
work correctly unless it’s true. So the heap property is a precon-
dition of the add method. It would be wise to write an isValid
method in the Heap class that checks the property, and place

assert isValid();

at the start of the add method.
Similarly, a postcondition is something that should hold

when the method is finished. One seldom checks postcondi-
tions, but asserting them makes sense. Class invariants are
postconditions as well as preconditions, so it would be a good
idea to assert the heap property at the end of each Heap
method as well as at the beginning.

If a method changes its parameters, chances are the
method’s postcondition will need access to the original
parameter values. You can write the postcondition by storing
copies of the original values before they’re modified. For
example, the postcondition of any sort routine is that the
input array be in sorted order, and that it consist of the same
elements as before the sort. While the first condition does not
require the original array, the second one does.

Copying parameters is expensive, so it should happen only
when assertions are enabled. You can achieve that by using a
side effect in an assertion:

void sort(int[] a) {

int[] old_a = null;

J2
SE

H
om

e
J2

E
E

J2
M

E

56 JANUARY 2002

”

57JANUARY 2002

Java COM

ashnasoft
www.ashnasoft.com

ke a well-written test, a well-placed

ssertion will catch bugs early

n the development process

L“

Java COM

assert (old_a = (int[]) a.clone()) != null;

// do the sort

assert inSortedOrder(a) &&

hasSameElements(a, old_a);

}

The inequality check in the first assertion is there only to
produce a Boolean that is always true; the assertion’s real job

is to clone the array. If assertions are disabled, no copying will
occur.

• Use assertions for those hard-to-reach places in the mid-
dle.

Assertions are great for places in the middle of methods
when part of the job is done. An assertion in the middle of a
method will catch problems sooner than one at the end,
and may have less work to do as well. For instance, part of
the process of adding a new item to a heap involves repeat-
edly comparing a node’s value in the tree with those of its
two children, and then possibly swapping the node with its
larger child. Placing an assertion after this piece of code, to
the effect that the heap property still holds for the parent
node and its children is cheaper than testing the whole heap
for validity at the end, will catch any problems in the code
right where they happen, and acts as useful documentation
too.

• Don’t use assertions to flag “unreachable” code.
We often write switch statements whose default case we

know cannot happen, and sometimes the compiler forces us
to catch exceptions that we know cannot be thrown. Some
suggest using assertions in these and other allegedly impossi-
ble-to-reach places, but I disagree. Checks are preferred: they
will not be disabled and, by assumption, will not affect per-
formance, since they will never run. Simply writing a throw
statement would be adequate (although exactly which class of
exception should be thrown is not clear), or we could postu-

late a Check.impossible() method that throws the exception
and write:

switch (x) {

case 1: ...; break;

case 2: ...; break;

default: Check.impossible();

}

• Use assertions as executable documentation.
Occasionally you may get the impulse to write a brief com-

ment in the middle of your code to the effect that, for exam-
ple:

// at this point, x is greater than y

Instead of commenting it, assert it:

assert x > y;

The assertion is as valuable as the comment to the human
reader, and it’s machine-checkable as well.

• Treat assertions as tests.
Assertions are the first line of testing – they are subunit

tests. Once you realize this, many of the above guidelines fall

out almost automatically. You disable assertions in produc-
tion for the same reasons that you don’t ship your test code.
Asserting the postcondition of a public method is much like
writing a unit test for that method. And the importance of
midmethod assertions is clear: they’re located in places where
you can’t otherwise test.

• Assert early and often.
Write assertions as you write your code – or even before, if

you’re a devotee of Extreme Programming. That is when the
logic’s details are freshest in your mind. And feel free to write
plenty of them, since you can always disable them.

Conclusion
Although assertions are a small addition to Java – just one

new statement – they can have an impact out of proportion to
their size. Like a well-written test, a well-placed assertion will
catch bugs early in the development process, when it’s cheapest
to fix them. They serve as helpful documentation to readers of
your code. And since assertions can be disabled at runtime, your
program’s performance need not suffer. So don’t hesitate to use
them. Assertions are sure to improve the quality of your code.

AUTHOR BIO
Jonathan Amsterdam is a senior consulting engineer at DataSynapse, Inc. Formerly, he was
president and founder of Astrel, Inc., a Java training and consulting firm. He’s also an adjunct
professor of computer science at New York University.

J2
SE

H
om

e
J2

E
E

J2
M

E

amsterdam@cs.nyu.edu

58 JANUARY 2002

ASSERTION DOS AND DON'TS
• Do disable assertions for deployment, but make it easy to reenable

them in the field.
• Do use assertions for expensive tests – otherwise, use a nonremov-

able check.
• Do use assertions for preconditions and postconditions.
• Do place assertions in the middle of methods, not just at the beginning

and end.
• Do think of assertions as executable documentation.
• Do think of assertions as tests.
• Do write assertions as you write your code.
• Don’t use side effects in assertions.
• Don’t try to recover from an assertion – let it crash your program.
• Don’t mention assertions in documentation – they are an implementa-

tion detail.
• Don’t use assertions to check arguments.
• Don’t use assertions to mark unreachable code

”

59JANUARY 2002

Java COM

new atlanta
www.newatlanta.com

Java COM

60 JANUARY 2002

Synchronizing Java Threads on a Shared
Resource with Multiple Views

M U L T I T H R E A D E D A C C E S S

This is especially challenging for
resources that may have multiple views.
For instance, multiple threads can inde-
pendently open a given file and will have
separate instances of the java.io.File
object, each corresponding to the same
file. The different object instances that
correspond to multiple views of the
same resources don’t allow synchro-
nized multithreaded access to these
resources.

This article illustrates the problem
and examines approaches to solving it
with an emphasis on their synchroniza-
tion and concurrency trade-offs. It pres-
ents a few use-case examples where this
problem manifests itself, followed by a
simple and elegant solution with the
complete Java source code. Java pro-
grammers who work with remote
resources, including file, URL, LDAP,
JNDI, and relational databases, are like-
ly to find this article helpful in recogniz-

ing areas of code that are vulnerable to
suboptimal synchronization.

How Java Thread Synchronization Works
Each Java object has a “monitor” that

can be used as a semaphore to synchro-
nize multithreaded access to shared
resources. Typical resources that are
shared in a Java program include shared
memory spaces such as tables, queues,
and lists. Various Java classes such as
java.util.Vector and java.util.Hashtable
have most of their methods synchro-
nized on the object instance. As you may
already know, any Java object may be
used as the semaphore for synchroniz-
ing multithreaded access to itself or
other object(s), as long as each thread
uses the same instance of the object to
synchronize upon.

The Challenge with Multiview Resources
Shared system and network re-

sources, such as files, database tables,
network connections, URLs, and LDAP
directory entries, are also represented
by one or more Java objects, and often
the same underlying resource is repre-
sented by more than one object. Each
object that represents a resource pres-
ents a view of that resource. While it’s
sometimes possible and desirable to use
a unique object instance that corre-
sponds to a given underlying resource,
in many cases it’s either undesirable or
impossible to do so. Figure 1 illustrates
the synchronization and concurrency
challenges posed by multiple views of a
given resource.

Consider an application that needs
to write some data to one of several
hundred files in a given file system. The
file is selected based on the request

parameters. Assume that a multithread-
ed request dispatcher handles each
incoming request, parses the request to
map it to a unique file in the file system,
and then edits the file as per the request
parameters. Given the possibility that
multiple simultaneous requests can
map to the same file, the application
must ensure that access to a given file is
synchronized across multiple threads.

The implementation in Listing 1 is
clearly incorrect, since the synchroniza-
tion is based on a local object instance.
Two threads processing independent
requests that return the same file name
will create two separate java.io.File
objects. Therefore no synchronization
will be achieved. Making the entire
method synchronized introduces more
problems than it solves. First, it signifi-
cantly reduces concurrency by synchro-
nizing access across independent files.
Second, it doesn’t help if the request can
be dispatched to one of many methods,
each of which may need to access the
requested file. Synchronizing every
method that may need to access any file
is clearly unacceptable, as it severely
reduces concurrency.

First Cut at the Solution
Our first attempt at solving this prob-

lem is to make use of a shared table that
keeps track of the files in use and returns
the same instance of a File object to
every request that corresponds to a
given file. As a request is made for a file,
the table is checked to see if a File object
corresponding to the requested file
already exists. If so, the existing File
object is returned and the use count for
the File object is incremented by one.
Otherwise, a new File object is created

WRITTEN BY
VISHAL GOENKA

J
ava thread synchronization primitives are based on object

instances. Multithreaded access to a shared resource requires a
unique object instance that all threads accessing the resource can
synchronize upon.

A simple and elegant solution

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Multithreaded access to different resource views

AA0

A1

A2

An

Thread #1

Thread #2

Thread #3

Thread #4

Resource

61JANUARY 2002

Java COM

visual mining
www.visualmining.com

Java COM

62 JANUARY 2002

M U L T I T H R E A D E D A C C E S S

for the file and added to the table with
the use count set to one.

Once the requester is done with the
file, it must explicitly call a method that
decrements the use count by one and
removes the File object from the shared
table if the use count is reduced to zero.
Listing 2 provides the modified code
based on this solution. The method
acquireFile(String) is used to request the
object instance for a file and increment
the use count; the method releaseFile
(File) is used to decrement the use count
and release the File object if it’s no
longer in use.

Critical Analysis
Note: The try-finally block becomes

necessary to ensure that the file use
count is decremented even if the
method throws an undeclared throw-
able in the synchronized block. A
missed finally block can cause undesir-
able side effects such as memory leaks,
making this approach unattractive. This
approach is also unacceptable if the File
object is to maintain a state that is spe-
cific to each thread requesting access to
the file. The limitation is easy to get
around once we realize that there are
two distinct requirements here:
1. To obtain a reference to a File object

corresponding to the requested file-
name

2. To obtain a unique object to synchro-
nize the file access on

In the solution in Listing 2 we returned
the same object for both purposes,
whereas we could just as well return a dif-
ferent object for synchronization.

Second Attempt at the Solution
We modify the solution (see Listing

3) to create a local instance of the File
object and seek a unique object instance

for synchronization purposes only. The
method acquireSemaphore(File) checks
if the given File instance is equal to any
other File that exists in its tables. If so, it
returns the unique object stored against
the existing File entry and increments
the use count. Otherwise, it stores the
current File instance in its tables along
with a new java.lang.Object instance
created to act as the semaphore and sets
the use count to one. The method
releaseSemaphore(File) decrements the
use count for the File that’s equal to the
given File, and clears the entry if the
use count goes to zero. Using a java
.util.Hashtable (or java.util.Hash-
Map) makes the equality comparison
easy and efficient as long as the
hashCode returned is also the same for
objects that are equal (though not nec-
essarily the same instance).

A Few Use Cases
Before looking at further improve-

ments to the solution developed thus
far, let’s discuss a couple more use cases
so that we can arrive at a clear definition
of the problem.

First, consider a directory-based
application that uses LDAP or JNDI APIs
to access the directory. For optimal con-
currency it may be desirable to synchro-
nize thread access at the level of a direc-
tory entry. A directory entry can be
uniquely identified using a canonical
string representation of its “DN” or dis-
tinguished name. Using the solution
developed above, an application frag-
ment may be written as illustrated in
Listing 4 to allow for maximum concur-
rency while remaining thread-safe.

Next, we have a server application
that caters to authenticated users and
needs to limit access to certain
resources to one concurrent request per
user. The solution outlined in Listing 4

can be applied to all such resources by
using the unique identity of the authen-
ticated user to obtain a semaphore for
synchronization.

Formal Definition of the Problem
As you may notice, for the

acquireSemaphore method to work cor-
rectly in these examples, the argument
must uniquely represent the shared
resource and must also be equal to other
argument instances that represent other
views of the same resource. The prob-
lem can therefore be described as a
requirement to synchronize across n
objects that are not equal by reference,
but are equal by value. In other words,
these n objects are different views of the
same resource.

To avoid confusion, in the following
description I’ll use the term equal to
imply reference equality, and equivalent
to imply equality by value. Thus equal
objects are always equivalent, though
not the other way round. Therefore,
these n objects are equivalent but not
equal to each other. Expressed in Java, it
implies that the following is true for any
given n objects obj[0] through obj[n-1]
that we need to synchronize across:

obj[i] != obj[j]

// for all i != j, 0 <= i < n,

0 <= j < n

• obj[i].equals(obj[j])

• (obj[i].hashCode() ==

obj[j].hashCode())

// for all i, j, 0 <= i < n, 0

<= j < n

The solution is simple and elegant
and is illustrated in its entirety in Listing
5. Listing 6 presents Listing 3, rewritten
using the solution.

How Does the Solution Work?
Start with any object that satisfies the

synchronization requirements listed
above. Instead of synchronizing on the
object itself, obtain a semaphore for the
object using a single instance of the
monitor that’s accessible to all con-
cerned packages. The monitor main-
tains weak references to all objects with
semaphores in a hash map for faster
lookup. The weak reference allows the
objects to be garbage collected if there
are no other strong references to the
object, obviating the need for maintain-
ing use counts using try-finally blocks.

When you request a semaphore for an
object, the monitor looks for an object in
its hash table that’s equivalent to the given
object (has the same hash code and satis-
fies the equals method). If an equivalent
object is found, the same is returned.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 2 Synchronized access to different views of the resource

AA0

A1

A2

An

T1

T2

T3T4

A0AA0

Monitor

AA0

Resource

{{{{ }}{{A{A{ }}}}

63JANUARY 2002

Java COM

ilog
www.ilog.com

64 JANUARY 2002

M U L T I T H R E A D E D A C C E S S

Otherwise, the given object is added to the
hash table, wrapped in a weak reference
so that the garbage collector automatical-
ly removes it when it’s no longer in use.

This approach always keeps one ele-
ment of every equivalence set in the
hash table until no element in that
equivalence set is in use, at which point
it’s eligible to be removed until the next
time it’s required. Therefore, it’s best to
obtain a semaphore for a lightweight
object that’s a simple canonical repre-
sentation of the resource.

Unlike the example in Listing 2, the
semaphore (which is really the first
object in its equivalence set to look for a
semaphore) is used only for synchro-
nization, not for any other access,
thereby allowing context-specific set-
tings to be different among different
objects in the same equivalence set.
Wrapping the semaphore in a weak ref-
erence eliminates the need for main-
taining use counts and makes the usage
more natural. Figure 2 demonstrates
the solution.

The Nuts and Bolts
To conclude, let’s take a closer look at

the code in the monitor. The following
statement in the monitor may also
return a null in the case when ref is non-
null.

Object monitor = ((ref == null) ?

null : ((WeakReference)ref).get());

This is possible in the case of an
unlikely race condition in which the
object is cleared from the weak refer-
ence after the super.get(key) statement,
at which point it may still be in the hash
table. Checking for monitor == null
again guards against a rare race condi-
tion. The get and put methods of the
underlying HashMap (a WeakHashMap)
are not synchronized; this is good since
we don’t expose them directly but
through the single synchronized get
method in the monitor. Synchronizing
the get method of the monitor is essen-
tial, as it involves modification of a
shared data structure.

While a single instance of the moni-
tor may be functionally sufficient for the
entire application, for higher concur-
rency a different instance of monitor
should be used for independent mod-
ules or packages that require sema-
phores for objects of different classes.
The monitor tremendously simplifies
the writing of multithreaded code with
just the right amount of synchronization
– not more, not less.

AUTHOR BIO
Vishal Goenka is a

senior software
engineer for Campus

Pipeline Inc., where his
group is responsible
for the infrastructure

components of the
Campus Pipeline Web

Platform. He focuses
on security

architecture and
implementation. Vishal

holds a BS in
computer science

from the Indian
Institute of Technology

Kanpur (India). vgoenka@campuspipeline.com

J2
SE

H
om

e
J2

E
E

J2
M

E

public void process (Request req) {
File file = new File(req.getFileName());
synchronized (file) {

// … open/modify/close file as per the request parameters…
}

}

public void process (Request req) {
File file = acquireFile(req.getFileName());
try {

synchronized (file) {
// … open/modify/close file as per the request parameters…

}
}
finally {

releaseFile(file);
}

}

public void process (Request req) {
File file = new File(req.getFileName());
Object semaphore = acquireSemaphore (file);
try {

synchronized (semaphore) {
// … open/modify/close file as per the request parameters…

}
}
finally {

releaseSemaphore(file);
}

}

public void methodA(LDAPObject obj) {
String dn = obj.getDN();
Object semaphore = acquireSemaphore (dn);
try {

synchronized (semaphore) {
// read/modify/delete object

}
}
finally {

releaseSemaphore (dn);
}

}

public class Monitor {
private WeakHashMap map = new WeakHashMap() {

public final Object get(Object key) {
Object ref = super.get(key);
Object monitor = ((ref == null) ? null :

((WeakReference)ref).get());
if (monitor == null) {

monitor = key;
put (monitor, new WeakReference(monitor));

}
return monitor;

}
};
public synchronized Object get(Object key) {

return map.get(key);
}

}

static final Monitor monitor = new Monitor();

public void process (Request req) {
File file = new File(req.getFileName());
synchronized (monitor.get(file)) {

// … open/modify/close file as per the request parameters…
}

}

Listing 6

Listing 5

Listing 4

Listing 3

Listing 2

Listing 1

Java COM

65JANUARY 2002

Java COM

actuate
www.actuate.com

Java COM

66 JANUARY 2002

Evolutive Java Applications

D Y N A M I C T O O L S

Some of the reasons for this were:
• I didn’t have the right to access or

modify a class’s source file if, for
example, the class was developed by a
tier supplier.

• The class was used in many distrib-
uted sites and the new functionality
was useful for a small number of sites
only.

• There were some persistent objects
and I didn’t want to manage several
versions of the class or update all the
persistent objects using a batch
mechanism.

• I didn’t want to touch a tested class
that had been working well for many
months or years.

• Other developers were working on the
same class at the same time and we
had to coordinate our modifications
to avoid any incompatibility as well as
avoid scratching our modifications. It
would have been a lot easier if each
developer had worked on a different
source file associated with its own
functionality.

After much thought I decided I didn’t
want a completely dynamic solution,
such as JavaScript, where it’s possible to
add new functions to a class at runtime.
In that kind of language the perform-
ance is affected too much and the appli-
cation architecture becomes difficult to
master.

Finally, I created Dynamic Java
Binder (DJBinder), a tool that enables
you to dynamically attach interface
implementations to a class without
changing its source file. The dynamical-
ly attached interfaces are equivalent to
the interfaces listed after the “imple-
ments” keywords.

DJBinder uses the class loading
mechanism of the Java 2 platform to cre-
ate the link between the classes and the
interfaces at runtime.

How DJBinder Works
An Example Application

I have an application that creates
objects of type Man and Woman. Now it’s
time to add a new print functionality
that writes the name and age of each
person to the standard output. To reduce
the regression risk, the solution can’t
modify the existing application code.

Listing 1 shows all the definitions
used in this example. Note: These class-
es have not been designed with the
intention of using any dynamic mecha-
nism.

First I’ll present the Java code you
need to write to solve this problem using
DJBinder, then I’ll explain how DJBinder
handles the internal details.

The following statements write the
person “p” data to the standard output
using the Print interface:

Person p = ... ;

((Print) p).toStandardOutput ();

The cast operation is needed
because the Print interface isn’t directly
implemented by the Person class. The
Java compiler assumes that the Print
interface is implemented by a Person
subclass, but we know this isn’t true
since neither Man nor Woman imple-
ments the Print interface.

The DJBinder method that imple-
ments the Print interface without
changing the Person class is a new
abstract class named DI_Person__
Print:

public abstract class

DI_Person__Print implements Print

{

public void toStandardOutput() {

Person p= (Person) (Object) this;

System.out.println (p.getName());

}

}

The class name is very important
because it creates the link between the
Person class and the Print interface. The
class is abstract since it can’t be directly
instantiated; its instances are implicitly
created by DJBinder according to the
cast operations.

The main line of the toStandard-
Output() method is:

Person p= (Person) (Object)this;

This enables you to get the Person
object that’s associated with this inter-
face implementation. The cast isn’t done
directly because the Java compiler for-
bids a cast operation between two class-
es that don’t belong to the same hierar-
chy. The trick is to use an Object class,
such as bridge, which is legal because
the Object class is the root of all the class
hierarchies.

Writing the age is a little more diffi-
cult because the age member has a pro-
tected visibility that forbids access from
the DI_Person__Print class.

The solution proposed by DJBinder
is to create a new class with all the pro-
tected and private members of the
Person class that may be accessed from
the DI_Person__* classes. The name of
this class must be DA_Person. For exam-
ple, the following class authorizes access
to the age member:

abstract class DA_Person{

public int age;

}

This class makes it possible to use
the age member in the toStandard-
Output() method :

public abstract class

DI_Person__Print implements Print

{

public void toStandardOutput() {

Person p = (Person) (Object)

WRITTEN BY
ALVARO

SCHWARZBERG

For the past few years I’ve participated in several projects to
update existing Java applications.While working on those projects
I often wanted to be able to add new functionality to a class with-
out recompiling it.

Enable functionality-driven
software architecture

J2
SE

H
om

e
J2

E
E

J2
M

E

67JANUARY 2002

Java COM

preemptive
www.preemptive.com

Java COM

68 JANUARY 2002

D Y N A M I C T O O L S

this ;

System.out.println

(p.getName()) ;

DA_Person pp = (DA_Person)

(Object) this;

System.out.println (pp.age) ;

}

}

Notice that the object referred to by
the pseudo variable “this” is cast to the
DA_Person class to access the protected
member age. An equivalent alternative
would be to cast the variable “p” to the
DA_Person class :

DA_Person pp = (DA_Person)

(Object)p;

The final step of my example is to
loop over all the persons created by the
existing application and cast each per-
son to the Print interface (see Listing 2).

The mechanism implemented by
DJBinder is similar to the inner classes
of Java. The DI_* classes are similar to
inner classes. The most important dif-
ference is that each DI_* class is defined
in a different source file and can belong
to a different JAR file.

The fact that each DI_* class can be
extended from another class offers an

elegant way to implement the multiple
heritage in Java without the problems of
other languages such as C++.

The code shown in Listing 2 com-
piles well, but at runtime there would be
several errors if DJBinder didn’t use the
class loading mechanism to change the
bytecode on the fly.

The class loading mechanism works
in the following way: every time the Java
Virtual Machine needs a new class, it
requests the current class loader to
return the corresponding bytecode. For
example, the default class loader returns
the content of a file named class-
Name.class. This file is searched in the
directories listed in the CLASSPATH
environment variable.

The DJBinder class loader works in a
different way. First, it gets the original
bytecode using the class loader that’s
normally used by the application,
changes it, then returns the modified
bytecode to the virtual machine.

The DJBinder tool requires that the
JVM uses the DJBinder class loader. For
the console programs you simply need
to replace the traditional command:

virtualMachinePath javaParameters

applicationName

applicationParameters

with

virtualMachinePath

javaParameters

amslib.djbinder.Start

applicationName

applicationParameters

The amslib.djbinder.Start
class runs your application
using the DJBinder class
loader.

For other kinds of Java pro-
grams (applets, servlets, JSPs,
etc.) there’s a similar proce-
dure based on the runtime
environment characteristics.
For example, if you run your
Java application server using
the amslib.djbinder.Start
class, the beans and servlets
become DJBinder aware and
can use any interface that’s
dynamically implemented.
The DJBinder class loader
changes the original bytecode
in four places:

1. The cast operations with an
interface of target type

The exceptions eventually
thrown by the cast operations
are caught and DJBinder tries

to find a class named
DI_objectClass__interface or DI_object-
SuperClass__interface. If one correct
class is found, a dynamic interface
implementation object (DI_* object) is
created and returned, otherwise the
original exception is rethrown. The
objectSuperClass token represents any
class in the hierarchy up to the
java.lang.Object.

If the same cast is done twice for the
same object, the previous DI_* object is
returned instead of creating a new
object. This allows you to keep some
information within the DI_* objects.

In my example this bytecode change
prevents the ClassCastException that
should be thrown by the following state-
ment of the PrintAllPersons class (see
Listing 2):

Print d= (Print)e.nextElement();

The object returned by the expres-
sion e.nextElement() is an instance of
Person; normally it can’t be cast to the
Print interface, but DJBinder creates the
corresponding DI_* object, which
becomes the result of the cast operation.

2. The cast operations that have a class
as target type
If the casted object is a dynamic

interface implementation object, DJ-
Binder replaces the cast by a reference
to the main object, that is, the object
that triggered the creation of the DI_*
object.

In my example this bytecode change
prevents the exceptions that should be
thrown by the statements:

Person p= (Person) (Object)this;

DA_Person pp =

(DA_Person) (Object) this;

3. The references to a DA_* class
The DA_* classes are a buildtime

artifice and don’t exist in the runtime
environment. All the references to a
DA_XXX class are converted into a refer-
ence to the XXX class. In addition, spe-
cial methods are added to the XXX class
to enable controlled access to the pri-
vate and protected members. The access
is allowed from the DI_XXX__* classes
only.

In my example this bytecode change
enables you to access the protected age
member of the Person class.

4. The instanceof and == operations
These operations are modified to get

a behavior that’s compatible with the
result of the cast operation: if a cast
operation throws an exception, the cor-

J2
SE

H
om

e
J2

E
E

J2
M

E

north
wood

p/u

AUTHOR BIO
Alvaro Schwarzberg

works in software
development for

Dassault Systemes,
and other

international
companies based in
Colombia, Brazil, and

the U.S. He has
experience working

with multitiered
object-oriented

applications mixing
Java, C++,

and databases.

69JANUARY 2002

Java COM

capeclear
www.capeclear.com

Java COM

70 JANUARY 2002

D Y N A M I C T O O L S

responding instanceof operation must
return false; if a cast operation works
silently, the corresponding instanceof
operation must return true.

Let’s assume that the classes X,
DI_X__I, and DI_X__J exist and the “v”
variable refers to an object of type X,
therefore the cast operations:

(I) v

(J) v

do not throw an exception, and the
operations:

v instanceof I

v == (I) v

(J) v == (I) v

return “true.”
These changes create the illusion

that the main object and the dynamic
interface implementation objects are a
single object. This simple fact makes
programming a lot easier. Figure 1
shows the software architecture allowed
by DJBinder.

A final requirement of DJBinder is
that the DI_* and DA_* classes must
belong to the same package of the main
class or to a subpackage named
djbinder. For example, if the Person
class belongs to the acme.applis
package, the DI_Person__Print and
DA_Person classes must belong to the
acme.applis package or the acme
.applis.djbinder package.

The djbinder subpackage allows you
to use the DJBinder mechanism for
classes that belong to a sealed package –
a package that can’t be modified.

What do software developers and
application administrators gain from
using DJBinder?

For developers the modification unit
is usually the source file. Each source file
has a creation and modification date. In
large software projects with several

developers it’s necessary to establish a
reservation mechanism to prevent two
developers from changing the same file
simultaneously, otherwise one of the
modifications would be lost. DJBinder
allows you to distribute the tasks and
responsibilities among the developers
better, so each developer can work on a
well-defined set of functionalities
(grouped within an interface). This fea-
ture facilitates the parallel work of sever-
al developers (increasing the concurrent
engineering), thus reducing the dura-
tion of the project.

For customers and administrators
the modification unit is the executable
file. In a Java application the executable
files are the JAR files. DJBinder allows
you to build JAR files associated with
each functional modification. New
functionalities become available when
the corresponding JAR file is added to
the runtime environment. The JAR files
already delivered with the previous ver-
sions of the application don’t have to be
modified. This feature facilitates the
administration and reassures customers
who are afraid of regressions.

A feature that can be easily designed
using DJBinder is virtual typing – using a
type that’s different from the Java class
name to look for a dynamic interface
implementation. For example, you
could assign the virtual type “French” to
an instance of the Person class. In that
case the Print interface could be imple-
mented by the DI_French__Print class
and include some extra fields. Different
instances of the same Person class could
have different virtual types. This extra
flexibility is very useful, especially to
communicate with legacy applications
or legacy databases.

Conclusion
DJBinder enables a functionality-

driven software architecture that’s par-
ticularly flexible and makes the evolu-
tion of any Java application easier,
including existing applications, without
recompiling them. DJBinder uses the
Java class loading mechanism and does-
n’t need any special compiler or virtual
machine.

For more information about the class
loading mechanism see http://java.
sun.com/products/jdk/1.2/docs/api/ja
va/lang/ClassLoader.html, or contact
me at alvaro.schwarzberg@amslib.com.

You can download a full version of
DJBinder from www.amslib.com/dj-
binder; however, this version can’t be
used for commercial development with-
out my written authorization.

J2
SE

H
om

e
J2

E
E

J2
M

E

alvaro.schwarzberg@free.fr

FIGURE 1 DJBinder architecture

jar file 1

jar file

jar file

DJBinder

X

I

J
K

DI_X I DI_X K

2

1 3

class Person
{

public Person (String n, int a)
{

name=n; age=a; allPersons.add(this);
};

public static Enumeration getAll()
{

return allPersons.elements();
};

public String getName()
{

return name;
} ;

protected static Vector allPersons =
new

Vector();
protected String name ;
protected int age ;

}

public class Man extends Person
{

public Man (String n, int a) {super(n, a);}
}

public class Woman extends Person
{

public Woman (String n, int a) {super(n, a);}
}

public interface Print
{

void toStandardOutput() ;
}

PrintAllPersons
{

public static void main (String [] arg)
{

Enumeration e = Person.getAll();
while (e.hasMoreElements())
{

Print d = (Print) e.nextElement() ;
d.toStandardOutput () ;

}
}

}

abstract class DA_Person
{

public int age;
}

public abstract class DI_Person__Print
implements Print
{

public void toStandardOutput()
{

Person p = (Person) (Object) this ;
System.out.println (p.getName()) ;

DA_Person pp = (DA_Person) (Object) this ;
System.out.println (pp.age) ;

}
}

Listing 2: Full solution public class

Listing 1: Definitions used in the example

71JANUARY 2002

Java COM

pointbase
www.pointbase.com

72 JANUARY 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

A Perfect World
JASON BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J 2 M E I N D E X

74

78

84

72

A Perfect World
I was reading a forum discus-
sion recently that argued that

J2ME was a mess. The general
consensus (admittedly there

weren’t that many messages)
seemed to be that this conclu-

sion was correct. My automatic
response was “What a com-

plete load of bollocks.”
by Jason Briggs

When Should I Use JMS?
Three alternatives to JMS

by Nigel Thomas

J2ME Benchmarking:
A Review

Evaluating an application’s
performance objectively

by Carl Barratt and Glenn Coates

Hardware Accelerators
for J2ME Come of Age
Java gets a needed boost

by Ron Stein

Iwas reading a forum discussion recent-
ly that argued that J2ME was a mess.
The general consensus (admittedly

there weren’t that many messages) seemed
to be that this conclusion was correct. My
automatic response was “What a complete
load of bollocks” (which I think means I’ve
been living in England far too long).
However, upon reflection, I still don’t
entirely agree, but I don’t disagree either. I
am officially in-betwixt camps. Neutral.
Unbiased (yeah, right).

If you mistakenly view J2ME as the sum
of all Java technologies for embedded and
mobile devices, then yes, it can be confus-
ing. You have a couple of flavors of Waba,
which have nothing to do with Sun and
aren’t part of J2ME at all. There’s also iAppli,
NTT DoCoMo’s “somewhat-similar-to-
MIDP-but-not-quite” Java API for their i-
mode mobile phones. You have
PersonalJava, which is, kind of, part of the
J2ME family, but was around first so it
doesn’t really fit. And you have JavaPhone,
Java TV, and EmbeddedJava. Then we
launch into buzzword territory: MIDP,
CLDC, CDC, KVM, CVM...I could probably
keep going. It’s hardly surprising that, look-
ing at this bewildering array of products
and APIs, people turn somewhat chalky
gray and decide there’s no sense of direc-
tion there.

For a moment, imagine the world is a
better place. No one has taken potshots at
each other since World War II, John Lennon
was never assassinated, the Beatles never
broke up and now head a global chain of
McBeatles vegetarian fast food and music
stores. I won the lottery last year and am
consequently living a life of indolent luxury
somewhere on my own private Pacific
island (with a luxury yacht, don’t forget the
yacht).

And no one worries about legacy sys-
tems.

“What, our financial application was
written a hundred years ago in Cobol?

Don’t worry about it. Scrap the whole thing
and rewrite it in Java!”

In this perfect world (my perfect, not
necessarily yours), J2ME becomes the fun-
damental structure of the entire Java plat-
form. Configurations define the base (non-
GUI) level of an API, and each configura-
tion builds upon the ones below it. Profiles
provide the user interface API with a prod-
uct and, if they don’t build up from one
another in a hierarchical relationship like
configurations, at the very least they share
large chunks of their API set. CDC inherits
from CLDC. The Personal Profile (goodbye
PersonalJava) builds on top of CDC and
MIDP builds on top of CLDC.

Developers can take advantage of this
structure when writing applications. An
application is partitioned, separating the
user interface from the rest of the code. A
certain amount of rewriting or additional
coding will always be required when, for
example, moving an application from a
mobile phone up to a PDA, simply because
of the variation in device and functionality
provided; however, the amount of rework
will hopefully be limited by the basic
design.

The funny thing is, carried to the logical
(and yes, a bit oversimplified) conclusion,
this structure could propagate up into J2SE
and J2EE with each inheriting a configura-
tion and then defining a profile for the
“extra bits.” Which means J2ME becomes
the central core of Java – JDJ gets renamed
J2ME Developer’s Journal, and I reign
supreme from my tropical resort: “Bow
before me Alan, Ajit, and Jeremy!”

Ahem.
Alas, the world is a slightly more com-

plicated place. The various JCP Expert
Groups can’t apply a rule of thumb that
says we can ignore what has gone before
and do things the way they should be done.
So changes have to trickle through, slowly
(hands up – who’s still waiting for the
Personal Profile to make an appearance?).

AUTHOR BIO
Jason Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years “unofficially for five.”

Java COM

For the moment, we’re stuck with the cur-
rent state of play. If you’re developing for
mobile phones, MIDP is probably the best
choice; for a PDA, use PersonalJava. And ne’er
the twain shall meet.

As a result, J2ME winds up looking like a
mess of only – passingly – related products.

Still, nothing is perfect. More’s the pity.
In this month’s J2ME Developer’s Journal,

I mean Java Developer’s Journal, Ron Stein
discusses J2ME hardware accelerators (unfor-
tunately, not quite a bolt-a-box-on-the-side-
of-your-processor-and-things-will-go-faster
concept). And Glenn Coates and Carl Barratt
look at the issues in J2ME benchmarking.

Read on for your monthly fix of J2ME con-
fusion.

73JANUARY 2002

Java COM

install shield
www.installshield.com

Java COM

74 JANUARY 2002

WRITTEN BY NIGEL THOMAS

JMS has been a godsend to Java devel-
opers who want to use tried-and-test-
ed messaging paradigms without hav-

ing to wrestle with multiple proprietary
APIs. A new breed of messaging vendors is
delivering enterprise-quality JMS imple-
mentations at substantially lower costs
than the previous MOM incumbents, as
well as offering JMS wrappers to help inte-
grate legacy and Java environments and
extending JMS to lightweight and mobile
devices.

However, JMS is not the only show in
town. This article discusses when you
might prefer to use three existing alterna-
tives to JMS.

Use Messenger to Simplify JMS Development
For an application developer the com-

plex threading model in JMS can be hard to
use; you have to understand which thread
owns which session (and consumer and
producer), from which session you can
send/receive or add a listener, and so on.
This can be especially hard in servlet or EJB
containers when you don’t know what
thread your code is called from.

Messenger is a simple open-source
framework for working with JMS that takes
care of all these complex thread-pooling
issues and quality of service configuration
options. Developers using Messenger can
simply send, receive, or add listeners – then
Messenger takes care of the details. The
same Messenger instance can be shared
across many threads.

At deployment time the exact quality of
service and network topology (What JMS
provider should be used? Is it XA? What’s
the delivery mode? Acknowledgment
mode? Is it a topic or queue? Is it durable?
What’s the client name? etc.) is all con-
tained in a single XML deployment docu-
ment. You can find examples and more
information at http://jakarta.apache.org/
commons/messenger.html.

Messenger is already in use in
SpiritSoft’s new SpiritCache product; it

helped us simplify the JMS code
immensely.

Use JAXM for Interbusiness Messaging
JMS implementations from

different vendors are not
required to interoperate: details
of wire format and transport pro-
tocol are left to the provider’s dis-
cretion. So JMS usage is limited to
“single provider” situations, in which
the developer controls both producers
and consumers.

When the other end of the conversation
is another division or company, JMS gives
way to wire-format, standard-based APIs,
such as JAXM – the Java APIs for XML
Messaging – developed by the Java
Community Process as JSR 67.

JAXM is designed to support interbusi-
ness messaging. Based on SOAP, message
formats, payloads, and transport are stan-
dardized so that the other business will be
able to receive and understand them.
Unlike JMS, JAXM supports only the point-
to-point messaging domain – not least
because B2B messaging is usually one to
one. The high performance, low latency,
and programmatic flexibility of JMS are
traded for simplicity, reliability, and inter-
operability. JMS messages can of course be
bridged across JAXM.

Use JavaMail for Messages Anywhere
E-mail is slower still than B2B messag-

ing but has a huge installed base – even
home users have access to Yahoo! or
Hotmail. Just as in the past Telex was used
as a hybrid human/machine readable
network – you can see its echoes in EDI
formats like SWIFT – the JavaMail API is
ideal for low-priority, unpredictable mes-
saging where the receiver may be a
human or a process, lengthy delivery
delays and even message loss are possi-
ble, and disconnected clients are likely.
Like SOAP, JavaMail supports multipart
MIME messages.

Summary
Pick the API (or set of APIs) that best

suits your business needs:
• JMS is the ideal high-performance mes-

saging platform for intrabusiness mes-
saging, with full programmatic control
over quality of service and delivery
options.

• Messenger provides a simple facade to
JMS which – trading flexibility for sim-
plicity – eases development and
abstracts complexities into a simple con-
figuration file.

• JAXM provides an interbusiness messag-
ing API, supporting complex (but XML
only) formats across standard transport
protocols, and offering a standard
approach for bridging between different
JMS providers.

• JavaMail provides lowest common
denominator, slow, but human-readable
messaging using infrastructure already
available on virtually every computing
platform.

If there’s any likelihood that your quali-
ty of service or connectivity requirements
will change over time, use configurable
facades like Messenger to make sure you
can easily plug the right solution into your
application without having to make expen-
sive code changes.

nigel.thomas@spirit-soft.com

H
om

e
J2

E
E

J2
SE

J2
M

E
I N D U S T R Y C O M M E N T A R Y

AUTHOR BIO
Nigel is director of product management at SpiritSoft with over 20 years’ experience in the industry,

specializing in distributed systems architecture and audit.

When Should I Use JMS?

75JANUARY 2002

Java COM

fiorano
www.fiorano.com

H
om

e
J2

E
E

J2
SE

J2
M

E
Some of the more commonly asked questions on the various forums for J2ME seem to be, "What

is J2ME?" and "Is <so-and-so-product> a part of J2ME?" Here is where you will find all the

APIs that fall beneath J2ME's umbrella, and the packages you will find within those APIs.

CONNECTED, LIMITED DEVICE CONFIGURATION (CLDC) – VERSION 1.0
java.io input and output through data streams
java.lang fundamental classes
java.util collections, data and time facilities, other utilities
javax.microedition.io generic connections classes

You can find more information on CLDC at the following URL:
http://java.sun.com/products/cldc/

CONNECTED DEVICE CONFIGURATION (CDC) – VERSION 0.2
java.io input and output
java.lang fundamental classes
java.lang.ref reference object classes
java.lang.reflect reflective information about classes
java.math BigInteger support
java.net networking support
java.security security framework
java.security.cert parsing and management of certificates
java.text used for handling text, dates, numbers and messages
java.text.resources contains a base class for locale elements
java.util collections, date/time, miscellaneous functions
java.util.jar reading Jar files
java.util.zip reading Zip files
javax.microedition.io connections classes

Look for more CDC information here:
http://java.sun.com/products/cdc/

MOBILE INFORMATION DEVICE PROFILE – VERSION 1.0
java.io
java.lang CLDC, plus an additional exception
java.util CLDC, plus timer facilities
javax.microedition.io networking support based upon the CLDC framework
javax.microedition.lcdui for user interfaces for MIDP applications
javax.microedition.rms persistent data storage
javax.microedition.midlet defines applications and interactions between app and environment

The products page for MIDP is here:
http://java.sun.com/products/midp/

FOUNDATION PROFILE – VERSION 0.2
java.io see CDC
java.lang see CDC
java.lang.ref see CDC
java.lang.reflect see CDC
java.math see CDC
java.net see CDC
java.security see CDC
java.security.cert see CDC
java.security.acl access control lists
java.security.interfaces interfaces for generating keys
java.security.spec key specifications, and algorithm parameter specifications
java.text see CDC
java.text.resources see CDC
java.util see CDC
java.util.jar see CDC
java.util.zip see CDC
javax.microedition.io see CDC

The profile products page is here:
http://java.sun.com/products/foundation/

J2ME RMI PROFILE (JSR #66)
This profile interoperates with J2SE RMI, and provides Java platform–to–Java platform remote
method invocation for Java devices.

J2ME GAME PROFILE (JSR #134)
This is a proposed Micro Edition specification, so nothing is yet defined. According to the JCP
home page for JSR #134 (the Game Profile), the following areas will be covered:

1. 3D Modeling and Rendering for Games
2. 3D Physics Modeling for Games
3. 3D Character Animation for Games
4. 2D Rendering and Video Buffer Flipping for Games
5. Game Marshalling and Networked Communication
6. Streaming Media for Games
7. Sound for Games
8. Game Controllers
9. Hardware Access for Games

PDA PROFILE (JSR #75)
The PDA Profile will provide UI and storage APIs for small, resource-limited handheld devices.

PERSONALJAVA SPECIFICATION – VERSION 1.2A
java.applet full support from JDK1.1.8
java.awt modified from JDK1.1.8
– note: there is an extra method for PJ for double-buffering in java.awt.Component
java.awt.datatransfer full support
java.awt.event full support
java.awt.image full support
java.awt.peer modified
java.beans full support
java.io modified
java.lang modified
java.lang.reflect modified
java.math optional – may or may not be supported
java.net modified
java.rmi optional
java.rmi.dgc optional
java.rmi.registry optional
java.rmi.server optional
java.security modified
java.security.acl unsupported
java.security.cert some classes required, some optional
java.security.interfaces required if code signing is included
java.security.spec required if code signing is included
java.sql optional
java.text full support
java.text.resources modified
java.util modified
java.util.jar required if code signing is included
java.util.zip modified

Additional PersonalJava specific packages are:

com.sun.awt for mouseless environments
com.sun.lang a couple of error & exception classes
com.sun.util for handling timer events

PersonalJava will eventually be superseded by the Personal Profile. For more information on the
PersonalJava Application Environment:
http://java.sun.com/products/personaljava/

JAVA TV – VERSION 1.0
javax.tv.carousel access to broadcast file and directory data
javax.tv.graphics root container access and alpha blending
javax.tv.locator referencing data and resources
javax.tv.media controls and events for management of real-time media
javax.tv.media.protocol access to generic streaming data in a broadcast
javax.tv.net IP datagram access
javax.tv.service service information access
javax.tv.service.guide supporting electronic program guides
javax.tv.service.navigation services and hierarchical service information navigation
javax.tv.service.selection select a service for presentation
javax.tv.service.transport information about transport mechanisms
javax.tv.util creating and managing timer events
javax.tv.xlet communications interfaces used by apps and the app manager

Get off that couch and check out the JavaTV page at the following URL:
http://java.sun.com/products/javatv/

JAVA EMBEDDED SERVER – VERSION 2.0
com.sun.jes.service.http servlet/resource registrations
com.sun.jes.service.http.auth.basic http basic authentication
com.sun.jes.service.http.auth.users management of users and their access
com.sun.jes.service.timer for handling timer events
org.osgi.framework consistent model for app.dev., supports dev.and use of services
org.osgi.service.device detection of devices
org.osgi.service.http http access of resources
org.osgi.service.log logging facility

You can find more information on Embedded Server on the following site:
http://www.sun.com/software/embeddedserver/

JAVA CARD – VERSION 2.1.1
java.lang fundamental classes
javacard.framework core functionality of a JC Applet
javacard.security security framework
javacardx.crypto extension package with security classes and interfaces
Next time you use that American Express Blue card, you may want to know how it works, so take
a look here:
http://java.sun.com/products/javacard/The

 Gr
eat

 J2M
EA

PI
Ru

ndo
wn

Java COM

76 JANUARY 2002

77JANUARY 2002

Java COM

sitraka
www.sitraka.com

Java COM

ARKING BENCCHMA
JVM objectively JVM objectively Evaluating the performance of a JEvaluating the performance of a J Written byWritten by

Carl BarrattCarl Barratt
& Glenn Coates& Glenn Coates

IIt could bet could be
argued that argued that
the clock the clock
speed of a speed of a
givengiven
processingprocessing
platformplatform
enables youenables you
to estimateto estimate
the executionthe execution
time of a usertime of a user
applicationapplication
running on running on
that platform.that platform.

A A A A

78 JANUARY 2002

However, quoting figures such as MIPS (millions
of instructions per second) are somewhat futile,
since the execution of a specific number of instruc-
tions on one processor will not necessarily accom-
plish the same end result as that same number of
instructions running on a different processor. It’s
the execution speed of a given set of instructions
that’s of greater concern when selecting an appro-
priate platform to run application code.

Clearly some platforms will be more proficient
than others in this regard, though this is a difficult
parameter to quantify since it’s dependent to a large
extent upon the application code in question.
Benchmarking is the technique used to measure
the speed at which a particular platform is able to
execute code. Indeed, this is evident in the abun-
dance of benchmarks available. Numerous exam-
ples of Java benchmarking are listed at
www.epcc.ed.ac.uk/javagrande/links.html.

Benchmarks vary significantly in their complex-
ity, but invariably they comprise a number of lines
of code that, when executed on the platform being
tested, generates a discrete value to use during its
appraisal. This facilitates a comparison of the exe-
cution speed with similar platforms. Typically there
are three types of benchmarks, which have inherit-
ed titles in accordance with their origin:
• User
• Manufacturer
• Industry

User benchmarks are, as the name suggests, cre-
ated by any individual with an interest in the field.
Countless examples are available and characteristi-
cally they vary in quality; in the past benchmarks of
this type have been very influential.

Market incentives have driven the introduction
of manufacturer benchmarks; invariably these are
written to benefit the platform in question and so
can be disregarded unless used to facilitate the rel-
ative performance of platforms offered by that par-
ticular vendor.

Finally, the financial significance of benchmark-
ing has resulted in the development of industry
benchmarks, which are usually considered to be of
high integrity. Such benchmarks are defined by an
independent organization, typically composed of a
panel of industry specialists.

Why Write a Paper on Java Benchmarking?
Results are published for multiple benchmarks

and the primary issues can be clouded by hype; as a
consequence the selections available to the end user
are somewhat overwhelming. The crucial point is
how well your code performs on the chosen system,
so the question is: How do you identify a benchmark
that best models your application? An understand-
ing of benchmarks is vital to enable the user to select
an accurate measurement tool for the platform in
question and not be misled by the results.

The purpose of this article is to educate device
manufacturers, OEMs, and, more specifically, J2ME
development engineers, while at the same time
resolving any remaining anomalies in a discipline
that’s commonly misunderstood.

What Is a Benchmark?
Fundamentally, a benchmark should incorpo-

rate programs that, when invoked methodically,
exhaustively exercise the platform being tested.
Implicit in this process is the generation of a run-
time figure corresponding to the execution speed of
the platform. Benchmarks can be simplistic, com-
prising a sequence of simple routines executed suc-
cessively to check the platform’s response to stan-
dard functions (e.g., method invocation). Typically,
both the overall elapsed time and that for each rou-
tine in isolation is considered; in the former case it’s
usual to assert a weighting coefficient to each rou-
tine that’s indicative of its relevance in the more
expansive context. Each routine should run for a
reasonable amount of time. The issue here is an
assurance that performance statistics are not lost
within overheads at start-up.

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

79JANUARY 2002

Java COM

pramati
www.pramati.com

Java COM

80 JANUARY 2002

Java COM

Benchmarks can also be more substantive; for example,
processor-intensive applications can check multithreading by
running several other routines simultaneously to evaluate
context switching. Essentially there’s no substitute for running
the user’s own application code on the platform in question.
However, while this argument is laudable, it’s beyond reason-
able expectation that the platform manufacturer can imple-
ment this. To facilitate an accurate appraisal, it’s vital that any
standard benchmark utilized by competing manufacturers

should mimic as much as possible the way the platform will
ultimately be used.

The Advantages and Limitations of Benchmarking
Industry benchmarks are useful for providing a general

insight into the performance of a machine. Still, it’s important
not to rely on these benchmarks since such a preoccupation
distracts from the bigger picture. While they can be employed
generally to realize the efficient comparison of different plat-
forms, they have shortcomings when applied specifically. For
example, one function may be heavily used in the application
code when compared to another, or certain functions may run
concurrently on a regular basis. There are inherent benefits in
developing your own benchmark as this facilitates the tailor-
ing of routines to imitate the end application or to expose spe-
cific inadequacies in peripheral support. Manufacturers’
benchmarks can be written to aid the cause of specific vendors
and so can easily be tailored to mislead.

When considering more restrictive embedded environ-
ments, such as those used by J2ME-compliant devices, it
becomes apparent that the application developer must con-
sider the risks inherent in the hardware implementation of a
virtual machine prior to making a purchasing decision.

Speed is a primary consideration when adopting a JVM with-
in restricted environments; implementations of the J2ME vary
significantly in this respect, from JVMs that employ software
interpretation and JIT compilers that compile the bytecode to
target machine code while the application is being executed, to
native Java processors offering much greater performance.

Other factors to consider include the response time of the
user interface, implementation of the garbage collector, and
memory issues since consumer devices don’t have access to
the abundant resources available to desktop machines. While
this may seem a tangential point as far as benchmarking is
concerned, it’s one worth making since it’s imperative that
these areas in particular are comprehensively exercised.
Subject to these caveats, benchmarking is a valuable tech-
nique that aids in the evaluation of processing platforms, and,
more specifically, J2ME platforms.

Java-Specific Benchmarks
As with other platforms, numerous Java benchmarks have

appeared (see Table 1).
CaffeineMark is a pertinent instance of a benchmark since

its results are among those most frequently cited by the Java
community. On this basis we chose it as an example for further
discussion.

CaffeineMark encompasses a series of nine tests of simi-
lar length designed to measure disparate aspects of a Java

Virtual Machine’s performance. The product of these scores
is then used to generate an overall CaffeineMark. The tests
are:
• Loop: Employs a sort routine and sequence generation to

quantify the compiler optimization of loops
• Sieve: Utilizes the classic sieve of Eratosthenes to extract

prime numbers from a sequence
• Logic: Establishes the speed at which decision-making

instructions are executed
• Method: Executes recursive function calls
• Float: Simulates a 3D rotation of objects around a point
• String: Executes various string-based operations
• Graphics: Draws random rectangles and lines
• Image: Draws a sequence of three graphics repeatedly
• Dialog: Writes a set of values into labels and boxes on a form

An embedded version of CaffeineMark is available that
excludes the scores of the Graphics, Image, and Dialog tests
from the overall score. Furthermore, CLDC doesn’t support
floating-point operations, so the “Float” test is ineffective in
this context. This benchmark is regularly updated to account
for vendor optimizations and continues to be a reasonably
accurate predictor of performance for JVMs.

Bearing this in mind, alongside the high take-up of
CaffeineMark in the industry, it’s unfortunate that it’s
unsuitable for embedded environments such as J2ME. The
cogency of this argument is based upon its inability to
benchmark the interaction of Java subsystems, and the sub-
sequent failure to imitate typical real-world applications
faced by such devices. More specifically, it doesn’t take into
account certain situations in which a platform may have to
cope with a heavily used heap, the garbage collector running
all the time, multiple threading, or intensive user interface
activities.

To address some of these issues, representatives of leading
companies in the field have recently formed a committee
under the banner of the Embedded Microprocessor
Benchmark Consortium (EEMBC) to discuss the introduction
of an industry benchmark for J2ME devices.

TABLE 1 Examples of Java-specific benchmarks currently in existence

BENCHMARK URL COMMENTS
SPEC JVM98 www.spec.org/osg/vm98 Suited to Java clients running JDK1.1 or higher
CaffeineMark 3.0 www.webfayre.com/pendragon/cm3/index.html Executes a series of standard routines to exercise JVMs
Linpak Java benchmark http://netlib.org/benchmark/linpakjava Utilizes a dense 500x500 system of linear equations
SciMark 2.0 benchmark http://math.nist.gov/scimark2 Aimed at end applications intensive in scientific and numerical computing
VolanoMark www.volano.com/benchmarks.html Primarily suited to evaluating the performance of Java servers

“A benchmark should incorporate programs
that, when invoked methodically,
exhaustively exercise the platform being tested”

H
om

e
J2

E
E

J2
SE

J2
M

E

81JANUARY 2002

Java COM

compuware
www.compuware.com

Java COM

82 JANUARY 2002

What Is EEMBC?
EEMBC (www.eembc.org) is an independent industry

benchmarking consortium that develops and certifies real-
world benchmarks for embedded microprocessors; the con-
sortium is established among manufacturers as a yardstick for
benchmarking in this context. A principal concern of the com-
mittee is to produce dependable metrics, enabling system
designers to evaluate the performance of competing devices
and consequently select the most appropriate embedded
processor for their needs. The industry-wide nature of such
committees intrinsically helps to combat the practice among
some vendors of striving to artificially improve their ratings via
special optimizations of the compiler, which is now so
wretchedly prevalent.

A subcommittee was recently formed under the umbrella
of this organization to develop similar benchmarks for hard-
ware-based virtual machines. Founding companies within the
consortium include Vulcan Machines Ltd, ARM, Infineon, and
TriMedia. Primarily the committee aims to identify the limita-
tions of existing Java benchmarks, and to develop new ones in
which “real-world” applications are afforded a higher priority
than low-level functions.

An example benchmark conceived on this basis could be a
Web browser. Since this is a very intensive end application in
almost every respect, a figure relating to the proficiency of the
device running low-level code in isolation wouldn’t prove par-
ticularly representative of its functionality.

Consequently, the EEMBC consortium solution is expect-
ed to employ a series of applications reflecting typical real-
world scenarios in which CDC- and CLDC-compliant devices
can be employed. Further examples of such benchmarks
include a generic game or organizer that exercises intensive
garbage collection, scheduling, high memory usage, user
interface, and dynamic class loading. This way system
designers are able to evaluate potential devices for inclusion
in their end application by the appraisal of a benchmark
derived in an environment that’s analogous to that applica-
tion.

Other Considerations?
When applied prudently, benchmarks are an invaluable

asset that aid in the selection of hardware to suit a particular
application. However, they shouldn’t be regarded as the sole
criteria. It’s imperative that J2ME-embedded system designers
don’t rely upon the use of benchmarks exclusively, since the
issue is clouded by many other factors.

In the context of J2ME, systems extend beyond the virtual
machine to its interaction with peripheral devices such as a
memory interface; clearly such peripherals and the interfaces
to them must be considered when measuring the time it takes
to execute an application. In the case of memory, limitations
will be imposed on a J2ME-optimized device; this raises
numerous issues that may impact the performance of the
device, for example, garbage collection.

Also, implicitly, batteries are employed to power hardware
that’s compliant with the CLDC specification. Consequently,
power consumption of the virtual machine is of primary con-

cern and, accordingly, the clock speed must be kept to a mini-
mum. For example, it’s pertinent here that while software
accelerators may post acceptable benchmark scores, they may
also, as a consequence of their reliance upon a host processor,
consume excessive power compared to a processor that exe-
cutes Java as its native language.

Another significant factor is the device upon which the
virtual machine is implemented. The FPGA or ASIC process
used will clearly affect the speed at which the processor
runs, and variations in benchmark scores are a natural
corollary of this. Furthermore, the silicon cost of the entire
solution that’s required to execute Java bytecode must be
considered, particularly where embedded System-on-Chip
implementations of the JVM are concerned. Similarly, the

designer should be aware of fundamental issues such as the
“quality” of the JVM in terms of compliance with the J2ME
specification, reliability, licensing costs, and the reputation
of the hardware vendor for technical support. All these fac-
tors must be considered in tandem with the benchmark
score of the virtual machine prior to making a purchasing
decision.

Conclusion
No benchmark can replace the actual user application. At

the earliest possible stage in the design process, application
developers must run their own code on the proposed hard-
ware, since similar applications may post a significant dispar-
ity in terms of performance on the same implementation of
the virtual machine. However, since designers are often
focused on using their time more productively, they frequent-
ly rely upon industry benchmarks for such data. While there’s
no panacea, industry benchmarks such as that proposed by
EEMBC are a useful tool to aid in the evaluation of perform-
ance, provided you’re aware of its limitations in a J2ME envi-
ronment.

Resources
• Coates, G. “Java Thick Clients with J2ME.” Java Developer’s

Journal. Vol. 6, issue 6.
• Coates, G. “JVMs for Embedded Environments.” Java

Developer’s Journal. Vol. 6, issue 9.
• Cataldo, A. (April, 2001). “Java Accelerator Vendors Mull

Improved Benchmark.” Electronic Engineering Times.

AUTHOR BIOS
Glenn Coates works for Vulcan Machines as a VM architect developing a Java native
processor called Moon and has been a software engineer for nine years. For the last four
years he has worked with mobile devices and Java developing products. He also represents
his company at the EEMBC meetings. Glenn holds a degree in computer science and is also
a Sun-certified architect for Java technologies.

Carl Barratt works in applications support for Vulcan Machines. He has over seven years of
experience in various hardware and software development roles. Carl holds a BEng (Hons)
degree in electronic engineering and has undertaken PhD research at the University of
Nottingham.

Java COM

glenn@vulcanmachines.com & carl@vulcanmachines.com

“When applied prudently, benchmarks are
an invaluable asset that aid in the selection of
hardware to suit a particular application”

H
om

e
J2

E
E

J2
SE

J2
M

E

83JANUARY 2002

Java COM

softwired
www.softwired.com

Java COM

84 JANUARY 2002

Hardware Accelerators
for J2ME Come of Age

E M B E D D E D C O M P U T I N G

Companies that deploy Java-enabled
devices with native and resident appli-
cations developed using Java benefit
because porting isn’t necessary when
the underlying device technology
changes. These benefits have caused
companies – such as J-Phone, Motorola,
Nokia, NTT DoCoMo, and Sprint – to
integrate Java technology into their
products and services.

The flexibility afforded by the Java
platform has typically meant slow and,
at times, inadequate Java software exe-
cution and high-system energy usage
that impacts battery life. Despite today’s
deployment of Java-enabled devices, the
performance issue remains.

As with Java applications running on
desktop computers and servers, the goal
of Java-enabled devices is to achieve
Java software execution and energy use
that is equivalent to compiled software
developed in C, C++, and assembly
code. The acceleration techniques used
for desktop computers and servers,

however, are inappropriate for Internet
appliances and wireless mobile devices
that are typically cost-sensitive and
powered by batteries.

Computing- and processing-inten-
sive algorithms commonly migrate from
initially being implemented in software
to being in dedicated hardware. For
example, generating graphics images,
such as drawing polygons, moving
sprites, and rendering 3D effects, were
all initially implemented as software
routines. Now these types of graphics
functions are handled by the graphics
processor chip, where the specialized
processing can be done faster and more
efficiently than by software running on
the main system microprocessor. A sim-
ilar migration is under way with regard
to executing Java bytecode instructions,
hence boosting the performance of Java
application software developed for the
J2ME platform.

One of the big benefits of processing
Java bytecode instructions in dedicated

hardware is to bridge the gap between
the stack-based Java runtime and regis-
ter-based microprocessors. The issue
here is that the Java stack operations
require memory transactions to interact
with the stack (typically held within
memory), which slows performance and
burns energy.

Recently, In-Stat/MDR-released find-
ings point to more than 50% of embed-
ded JVMs utilizing hardware acceleration
by 2004, increasing to better than 70% in
2005. Device designers and manufactur-
ers, who are today designing products
that include hardware solutions to boost
Java software execution, validate the
attraction of hardware acceleration.
These market forces, combined with the
natural trend to migrate these computa-
tionally intensive activities to hardware,
have enabled hardware accelerators for
the J2ME platform to come of age.

Before discussing Java acceleration
hardware further, it’s important to
understand that hardware Java accelera-
tors don’t replace a Java Virtual Machine
(JVM) but rather complement it.

A Java Virtual Machine has several
components, only one of which (the
Java bytecode instruction interpreter
loop) is enhanced or replaced by a hard-
ware-based acceleration technology.
The JVM still takes care of loading and
verifying Java classes, managing memo-
ry, scheduling tasks, and other house-
keeping functions. The more efficiently
these other functions are implemented,
the greater the effect an accelerator can
have on overall performance.

WRITTEN BY
RON STEIN

Embedded Java technology, specifically the J2ME platform,
provides a universal and secure runtime platform for transient,
application-based content and services.Through the “write once,
run anywhere” promise of Java, the J2ME platform can support a
range of Internet appliances, from mobile wireless devices to TV
set-top boxes.

Java gets a needed boost

H
om

e
J2

E
E

J2
SE

J2
M

E

The acceleration technology most likely

to be adopted and included into

devices must complement existing

designs and not force major changes

“
”

85JANUARY 2002

Java COM

vmgear
www.vmgear.com

Java COM

86 JANUARY 2002

E M B E D D E D C O M P U T I N G

Acceleration Technologies
All acceleration technologies prima-

rily focus on the main bottleneck within
the JVM – the interpretation process –
and seek to improve the speed at which
Java bytecode instructions are inter-
preted and/or executed. A second area
of focus for some accelerators is to help
speed up the garbage collection
process.

Supporting the market’s appetite for
Java acceleration hardware are a num-
ber of solutions that can be grouped into
three main categories: native Java
microprocessors, Java accelerator per-
ipherals/coprocessors, and integrated
Java bytecode interpreters.

Native Java microprocessors use Java
bytecode instructions as the native
instruction set. It should be noted that
these microprocessors might also
include additional instructions neces-
sary to support an operating system and
device drivers.

Java accelerator peripherals/co-
processors are standalone chips or com-
ponents within a System on a Chip
(SOC) that execute Java bytecode
instructions.

Integrated Java bytecode inter-
preters, including instruction set exten-
sions that support bytecode execution
and other JVM operations, are micro-

processor architecture extensions that
perform on-the-fly Java bytecode inter-
pretation within the core of a micro-
processor chip.

According to In-Stat/MDR, native
Java microprocessors “are an anti-
infrastructure solution” because devel-
opment tools, add-ins, and other sup-
port are not available from the third-
party market at large. The absence of
infrastructure and third-party market
support makes the overall solution
unpalatable and is one of the primary
reasons that Sun Microsystems aban-
doned the development of its own
native Java microprocessors (the “Pico
Java” and “Micro Java” microproces-
sors).

Native Java microprocessors in gen-
eral continue to be poorly received by
the marketplace.

Java accelerator peripherals/co-
processors are the newest category of
devices and hold great promise as long
as they can be easily and transparently
integrated into a system. As with native
Java microprocessors, the more effort
that it takes for a designer to incorporate
a media or content accelerator, the less
likely that technology or product will be
chosen.

What this means is that the accelera-
tion technology most likely to be adopt-

ed and included into devices must com-
plement existing designs and not force
major changes. In today’s market,
designers prefer to have a hardware Java
accelerator and JVM as an overall inte-
grated solution. A solution that recog-
nizes and accommodates designers’
requirements will be embraced more
rapidly than more intrusive options.

A key attribute and benefit of any
solution is one that offers transparent
integration with any JVM as well as with
existing hardware designs that minimize
development efforts and therefore
reduce the always-critical time-to-mar-
ket.

Choosing the Right Solution
As the J2ME platform gains accept-

ance in wireless mobile devices, Internet
appliances, and other embedded appli-
cations, that acceptance is, in turn, driv-
ing adoption of specialized hardware
that improves the performance of soft-
ware developed for the J2ME platform.
Different options exist in today’s market,
each with its own unique set of perform-
ance characteristics and pros and cons,
so designers are encouraged to assess
their requirements in advance and
choose a solution accordingly.

AUTHOR BIO
Ron Stein is a senior
marketing manager

at Nazomi
Communications, Inc.

He has an MBA
from Santa Clara
University and a
BSEE from the

University of
Pittsburgh.

H
om

e
J2

E
E

J2
SE

J2
M

E

corda
www.corda.com

ron@nazomi.com

87JANUARY 2002

Java COM

infragistic
www.infragistics.com

F R O M T H E E D I T O RD IF

Java COM

88 JANUARY 2002

basebeans
www.basebeans.com

J2
SE

H
om

e
J2

E
E

J2
M

E

site, but it was actually fully owned/operat-
ed by Microsoft (www.gotdotnet.com/
team/compare/). It’s a bit of a shame, as
that instantly puts us Java developers on
the defensive when browsing it, especially
when you read the opening gambit that
they claim to have implemented the J2EE
Pet Store application using .NET technolo-
gy and made it run 28 times faster at only a
fraction of the cost. Mmmmm...anyone
that believes that on face value is heading
for trouble.

Being a little cynical I had to find out
more. I spent a lot of time looking through
their documentation, their examples,
their white papers, and most of all their
figures. Irrespective of their conclusions,
what annoys me is the fact that it’s so
obviously weighted in Microsoft’s favor.
Had this been a third-party report, then
maybe that would have lent a little more
credence to it, but, as it is, you have to
take it with a pinch of salt.

IBM wasn’t too impressed with the find-
ings either, it would appear. They issued a
counterreport detailing all the flaws in
Microsoft’s claim. Microsoft had chosen to
demonstrate their findings on a number of

different configurations, including Oracle,
Sun, and IBM. Although, as far as I’m
aware, IBM is the only one to publicly
denounce the findings. Maybe Sun and
Oracle are just too busy for a retort!

When you read the IBM paper,
“Setting the Record Straight” (www-
3.ibm.com/software/info1/websphere/
news/ibmnews/compreview4.jsp), it
does indeed prove interesting reading
and on the whole offers a well-balanced
argument to the Microsoft claim that
J2EE is 28 times slower than .NET.
However, that’s not to say IBM’s report is
perfect – they make some leaps-of-faith
as well, although not as glaring as what
Microsoft is leading you to believe. I
advise you to access the two reports, have
a read, and draw your own conclusions.

This was debated hotly on our mailing
list (Straight Talking@Yahoo), but sadly
the majority of the posters are hard-core
Java developers, so we didn’t have anyone
with .NET experience to argue against.
This, I think, is the crux of the majority of
debates: .NET developers are seriously
thin on the ground. To that end, Microsoft
is very good at convincing nondevelopers
that they are developers and, therefore, I
don’t think we’ll have a good debate for a
long time yet. Microsoft is good at
empowering their community; develop
an MS Word Macro and you’ll find your-
self being called a “Web services” devel-

oper! Since the word “developer” has a
sexier ring than most titles, a lot of people
are happy to have this title bestowed on
them and begin to believe they are real
developers. Dangerous state of affairs.

This whole debate between .NET and
J2EE could well be academic. At the end of
day, as one poster quite correctly pointed
out, we didn’t consciously choose TCP/IP
or HTTP. We chose them because everyone
else did. It was the beehive mentality with
respect to technology standards; we just
swarmed to the most popular standard.

I believe the decision between .NET
and J2EE will probably come down to the
largest user body. If that happens to be
.NET, then we’ll start seeing a lot more
crossover from the J2EE vendors to ensure
they don’t lose their customer base. If it’s
J2EE, then Microsoft will have to concede
and start moving “C#” back to Java again.
(How does that saying go? “It will be a cold
day in hell before that happens.”)

I look forward to what 2002 will bring
to our Java lives. But be warned, it’s not
going to be an easy year for us Java devel-
opers. Our loyalties are going to be tested.
We’re going to be lured to the “dark side”
with tales of vast riches and connected,
interoperable systems. We have to resist.

We can’t be assimilated to the
Microsoft Borg. If we are, then the com-
puting industry will be a desperately
bland and boring place to work.

Sca
nda

lou
s P

rop
aga

nda
:

‘Tw
ent

y-E
igh

t Ti
me

s Fa
ste

r th
an

J2E
E!’

–continued from page 5

89JANUARY 2002

Java COM

javaone
www.sun.com

A S K D O C T O R J A V A

Java COM

90 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Receive 12 issues of Java Developer’s Journal
for only $49.99! That’s a savings of $21.89 off

the cover price. Sign up online at
www.sys-con.com or call 1-800-513-7111

and subscribe today!

DON’T MISS AN ISSUE!

SAVE30%Off*

* Offer subject to change without notice

ANNUAL COVER PRICE

$71.88
ANNUAL NEWSSTAND RATE

$49.99

30%

YOU PAY

YOU SAVE
Off the
Newsstand Rate

the annual
newsstand rate

Here’s what you’ll find

in every issue of JDJ:

• Exclusive coverage

J2EE J2SE J2ME

• Exclusive feature articles

• Interviews with the hottest
names in Java

• Latest Java product reviews

• Industry watch

Unlike the doctor who works for your
HMO, I won’t require a copayment for
each visit nor ask you to fill out long

arduous forms. I’m here to help readers of Java
Developer’s Journal find a cure for their Java
system ills.

HOW CAN I ACCESS THE
ACTIVE DIRECTORY OF
WINDOWS 2000 SERVER
TO AUTHENTICATE REGIS-
TERED USERS WITH MY

APPLICATION?

I have a couple of thoughts. First, I com-
mend you on being open-minded about using
the Active Directory to store user information
for your Java-based applications. Many of us
are anti-Microsoft, and it gets in the way of
deploying systems rapidly and in a cost-effec-
tive manner. While Microsoft did deviate from
the standard LDAP implementation, it will
more than meet your needs for the future. I
like the fact that it frees you from being stuck
with per-entry charges as in other implemen-
tations.

Now for your answer. You can authenticate
to the Active Directory using simple authentica-
tion by setting the following JNDI security prop-
erties:

javax.naming.security.authentication
javax.naming.security.principal
javax.naming.security.credentials

Let’s look at a code snippet to demonstrate
how to authenticate the administrator in the
domain doctorjava.com:

// Create a table to store the five
properties

Hashtable env = new Hashtable(5);

env.put(Context.INITIAL_CONTEXT_FAC
TORY,"com.sun.jndi.ldap.LdapCtx
Factory");

env.put(Context.PROVIDER_URL,

"ldap://pdc.doctorjava.com:389");
env.put(Context.SECURITY_AUTHENTICATION,

"simple");
env.put (Contex t .SECURITY_PRINCIPAL,
"cn=administrator,cn=users,dc=pdc,dc=doc-

torjava,dc=com");
env.put(Context.SECURITY_CREDENTIALS,

"doctorjava");
try {

ctx = new InitialDirContext(env);
// Do work

}

The provider URL should point to a domain
controller. It would be ideal to also change the
port that the Active Directory LDAP provider lis-
tens on. Instructions on how to do this are locat-
ed at http://msdn.microsoft.com.

I WOULD LIKE TO USE A
JAVA.NET.URL OBJECT, BUT
I’M BEHIND A PROXY
SERVER. WHAT DO I NEED
TO DO TO GET IT TO WORK?

There are two different approaches to solv-
ing your problem. Essentially, you can specify
the Proxy server as a system property when you
start up the JVM or do it programmatically. If you
want to do it while starting the JVM, here’s the
syntax:

Java –classpath –DproxySet=true
–DproxyHost=myproxy –DproxyPort=80

Q

Q

Prescriptions for Your Java Ailments

?

?

91JANUARY 2002

Java COM

ctia wireless
www.ctia.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

JANUARY 200292

In January XML-J:
Got XSLT? – Part 3
Transform an XML example to speech

XSL Formatting Objects – Here Today,
Huge Tomorrow
XSL-FO, while in its early stages, is poised to become the ‘next
big thing’ to present XML data

Using the IBM XML Security Suite – Part 2
Encrypting XML documents dynamically

SOAP Messages with Attachments
How the emerging W3C note can be used with the Apache
SOAP implementation

Receive 12 issues of XML-Journal for only
$77.99! That’s a savings of $5.89 off the

annual newsstand rate.
Sign up online at www.sys-con.com or call

1-800-513-7111 and subscribe today!

DON’T MISS AN ISSUE!

SUBSCRIBE
AND SAVE

Offer subject to change without notice

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$77.99

$5.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

A S K D O C T O R J A V A

You can also set it programmatically in your
code by setting the system properties as fol-
lows:

System.getProperties().put("proxySet","true");
System.getProperties().put("proxyHost","my-

proxy");
System.getProperties().put("proxyPort","80");

I WAS READING THAT
WINDOWS XP NOW PRO-
VIDES RAW SOCKETS SUP-
PORT. I’M INTERESTED IN
USING JAVA TO DEVELOP A

NETWORK SNIFFER AS WELL AS
AN EQUIVALENT TO TRIANGLEBOY
(WWW.TRIANGLEBOY.COM). COULD
YOU POINT ME IN THE RIGHT
DIRECTION?

I see the potential for mischief in answering
this question but will leave it up to each reader’s
individual judgment. First, Java doesn’t natively
provide access to raw sockets. I see the merit in
someone taking the lead in developing a speci-
fication for raw sockets support as part of the
Java Community Process (www.jcp.org).
Luckily, there is a third-party API (JPCAP) that
allows you to capture and send IP packets from
a Java application. For more information, visit
www.goto.info.waseda.ac.jp/~fujii/jpcap/index.
html.

The JPAP APIs currently support Ethernet,
Ipv4, Ipv6, ARP/RARP, TCP, UDP and ICMPv4. It
has been tested on FreeBSD 3.x, Linux RedHat
6.1, Solaris, and Microsoft Windows 2000.

I WAS READING THE
JAVAMAIL SPECIFICATION
ON THE SUN SITE AND
SAW PROVIDERS FOR
POP3 AND IMAP. I’D LIKE

TO KNOW IF THERE’S A JAVAMAIL
PROVIDER THAT SUPPORTS NNTP?

You’re in luck. Knife will do everything you
require from a news-user agent. Visit
http://dog.net.uk/knife/.

I’M LOOKING FOR A GOOD
UML MODELING TOOL.
RATIONAL ROSE AND
TOGETHER/J ARE OUT OF
MY BUDGET. COULD YOU

POINT TO ANY GOOD BUT FREE
TOOLS THAT PROVIDE SIMILAR
FUNCTIONALITY?

Many developers’ tools are pricey. Even
large corporations can’t afford to put tools on all
their developers’ desks and have to either use
these tools illegally or deploy some floating
license scheme that causes its own problems.
The open source movement seems to be gath-

ering speed and is targeting users like you with
cost-effective (if not free) answers to your prob-
lems.

One tool you should consider looking at is
ArgoUML (http://argouml.tigris.org). It supports
the latest UML specification, is completely open
source, and written in Java. It’s actually easy to
use and provides guidance to modelers when
they’re making design decisions.

While you’re on its site, check out
Subversion (http://subversion.tigris.org), which
is a good version control system. Also look at
Scarab (http://scarab.tigris.org), which is a
Web-based issue tracking system.

DO YOU KNOW OF A GOOD
JAVA OBFUSCATOR?

Many of my peers are familiar with
my “Eschew Obfuscation” screen saver (my way
of saying don’t make simple things hard to
understand). When I am in Dilbert mode, I some-
times think some developers are prone to obfus-
cation. Just look at some of the code out there.

The main reason you’ll want to use an
obfuscator for your programs is to protect some
portion of your code from being reverse-engi-
neered. These programs work by renaming
human-understandable variables and method
names to something that is less obvious. Usually
you’ll use this to protect license and registration
information. There are many obfuscators on the
market (such as RetroGuard, Source Guard,
DashO-Pro, and JODE) that will address your
needs. None of them can prevent reverse-engi-
neering 100%, but they will keep junior devel-
opers from understanding the code.

HOW CAN I PRINT AN
HTML/XML DOCUMENT
FROM A JAVA PROGRAM
USING J2EE CLASSES TO
POSTSCRIPT?

I’d like to thank Renu Verma for coming up
with a question that stumped me for a couple
of days. But persistence prevailed and I have
the answer. Java currently does not have sup-

Q

Q

Q

Q

Q

?

?

93JANUARY 2002

Java COM

sys-con media
www.sys-con.com

Java COM

94 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Wireless Business
& Technology:
i-mode 101
A WBT Special for all wireless operators and developers around the
globe hoping to quickly learn how to imitate NTT DoCoMo’s wildly
successful i-mode data offering in Japan.

Is Wireless Broadband Barreling Your Way?
WBT’s David Geer looks at wireless broadband connectivity as it
spreads around the globe.

The Impact of Privacy on the Future of Wireless Advertising
WBT’s SMS editor, Dan Lubar, questions the balance of location-
based advertising and an individual’s right to privacy.

The GSM Association M-Services Initiative
A look at a series of guidelines generated
to give WAP a friendlier consumer face.

Receive 12 issues of Wireless Business &
Technology for only $49.99! That’s a

savings of 30% off the cover price. Sign up online
at www.sys-con.com or call 1-800-513-7111

and subscribe today!

DON’T MISS AN ISSUE!

SAVE30%Off*

* Offer subject to change without notice

ANNUAL COVER PRICE

$71.88
ANNUAL NEWSSTAND RATE

$49.99

30%

YOU PAY

YOU SAVE
Off the
Newsstand Rate

the annual
newsstand rate

A S K D O C T O R J A V A

port for image-saving functionality, but this
will be introduced as part of JDK 1.4 where it
will add a new image I/O package. The func-
tionality is based upon JSR 15 – Image I/O
framework (http://java.sun.com/aboutJava/
communityprocess/review/jsr015/index.html).

In the meantime, there are a couple of third-
party add-ons you could use to get the function-
ality you desire. One product that works pretty
well is provided by Lightsaber Computing and
can be downloaded at www.lightsaber.com/
project3PO/java2d-pstext.html. You should also
visit Snowbound’s Software RasterMaster
(www.snowbnd.com). On the chance that you
also need to read a postscript document, check
out ToastScript (www.geocities.com/toast-
script/).

WHAT JDBC DRIVERS ARE
AVAILABLE FOR
MICROSOFT SQL SERVER?

You’re in luck. If you’re using SQL Server
2000, Microsoft currently has JDBC drivers in
beta. You can check out www.jturbo.com/ for
drivers. If you’re on an earlier platform, you’ll
need to consider a third party. The highest qual-
ity drivers I’ve run across to date are from BEA,
but they’re pricey. If you’re looking for some-
thing cheap (or even free) I recommend visiting
www.freetds.org. Their drivers work pretty well.

I’M USING SQL SERVER
AND WOULD LIKE TO MAKE
IT BEHAVE LIKE
JAVA.UTIL.STACK SO THAT
MULTIPLE USERS CAN DO

POP() BUT NOT RETRIEVE THE
SAME ROWS.

It took me a long time to come up with the
right prescription (actually two different ones).
The first solution involves putting logic in the
database (faster but not portable), while the sec-
ond shows how to do it in Java. Let’s describe
the database approach in detail. For example,
you have a table that looks like the following:

NAME TYPE
UID Int
Name Varchar(200)
DateUpdated Smalldatetime

You’ll need to add another column to the
table so you can provide a simulated lock mech-
anism. We’ll wrap this column in a transaction so
that it will handle concurrency issues. You’ll also
need to retrieve only the first value. The following
code ties together all of the above requirements:

DECLARE @UID INT
BEGIN TRAN
SELECT TOP 1 @UID = UID FROM

RegisteredUser WHERE LOCKSTATUS IS

NULL

UPDATE RegisteredUser
SET LOCKSTATUS = 1
WHERE UID = @UID

SELECT * FROM RegisteredUser WHERE UID =
@UID

COMMIT TRAN

As an alternative, you could move the logic
into Java and control the transaction behavior
yourself. I hope this meets your needs.

I KNOW HOW TO START A
NEW PROCESS, BUT NEED
A WAY TO TELL IF A
PROCESS IS ALREADY
RUNNING. THE SYSTEM

AND RUNTIME CLASSES DON’T
SEEM TO PROVIDE A MECHANISM.

You’re correct that System and Runtime
classes don’t provide any mechanism for deter-
mining already running processes. Most likely
this is for reasons of security and platform inde-
pendence. Luckily there’s a third-party way of
getting at what you desire, see www.jconfig.com.

I’M NEW TO JAVA AND AM
LOOKING FOR AN EQUIVA-
LENT TO C++ PRINTF SO
THAT I CAN WRITE INTE-
GERS, FLOATS, AND OTHER

DATA TYPES TO DISK.

The DataOutputStream class provides all the
functionality you desire. It provides methods to
write primitive data types to any output stream
(network connections, files, and so on).You can use
the DataInputStream class to read data back in.

I’D LIKE TO USE JMS
ALONG WITH IP MULTICAST.
COULD YOU POINT ME IN
THE RIGHT DIRECTION?

There are several JMS providers that sup-
port multicast messaging but my favorite is

Q

Q

Q

Q

Q

?

?

95JANUARY 2002

Java COM

sys-con media
www.sys-con.com

Java COM

96 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

In January WSJ:
Invoking .NET Web Services from Mobile Devices
Pocket PCs put .NET Web services at your fingertips

It’s More Than Just the Plumbing
The real issues are the nontechnical ones

Wireless Web Services with J2ME
Remote possibilities

Web Services @ Work
Gluing Web services to Baan

Bringing Web Services to Smart Devices
Realizing the value of the connected world

Web Services – Tiptoeing Through the Snarl
Creating Web services

Receive 12 issues of Web Services Journal
for only $69.99! That’s a savings of

$13.89 off the annual newsstand rate.
Sign up online at www.sys-con.com or call

1-800-513-7111 and subscribe today!

DON’T MISS AN ISSUE!

SUBSCRIBE
AND SAVE

Offer subject to change without notice

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$69.99

$13.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

A S K D O C T O R J A V A

FioranoMQ. They provide many samples that are
exactly what you’re looking for. In addition, their
implementation of using JMS with IP Multicast
is a serverless model.

I’VE HEARD THAT IT’S A
GOOD IDEA FOR A WEB
SITE TO STORE A USER’S
PASSWORD HASHED.
COULD YOU TELL ME THE

BEST WAY TO ACCOMPLISH THIS?

I can recommend a few. First, the password
store will be more secure if the password uses
a one-way algorithm. This, of course, will mean
that you’ll never be able to tell the user the
password he or she entered. Second, I recom-
mend that you immediately encrypt it in your
application server instead of performing this
function within the database before handing it
off to your data tier. This way it can’t be sniffed
traveling over the wire. Third, I hope that you’re
using certificates on your Web site.

Now I’ll show some simple code that uses
the MD5 algorithm (one-way). To use this code,
you’ll need to download the Java cryptography
extensions (JCE) from the Sun site.

import java.security.*;

public class Encrypt {

private String password = null;

public String new2Password(String passwd)
{

try {
MessageDigestmd=MessageDigest.get
Instance("SHA-1");

String clearPassword = passwd;
md.update(clearPassword.getBytes());
byte[] digestedPassword = md.digest();
return new String(digestedPassword);

}
catch (java.security.NoSuchAlgorithm-
Exception e) {

System.out.println("Rats, MD5 doesn't
exist");

return null;
}

}

public void setPassword(String passwd) {
try {
MessageDigest sha =

MessageDigest.getInstance("MD5");
byte[] tmp = passwd.getBytes();
sha.update(tmp);
password = new String(sha.digest());

}
catch (java.security.NoSuchAlgorithmException e) {
System.out.println("Rats, MD5 doesn't exist");

}
}

}

As you can see the code is straightforward.
You can use it as part of your registration and
login routines. Simply insert it anywhere the
user types his or her password and run it
through this code before comparing it to the
password stored in the database.

I’M PLANNING TO USE
JAAS FOR SECURITY AND I
SEE THAT THERE ARE TWO
POLICY FILES, ONE IN
JAVA.SECURITY AND THE

OTHER IN JAVAX.SECURITY.AUTH
PACKAGE. IF I USE THE
JAVA.SECURITY FILE, DO I HAVE
TO USE BOTH POLICY CLASSES? IF
NOT, HOW CAN I TELL THE JVM TO
USE EITHER ONE OF THE POLICY
CLASSES.

Use of policies is a topic that can be con-
fusing, but I’ll point you in the right direction.
Some of the confusion toward policies will be
solved in a future JDK where there will be a sin-
gle policy file. In the meantime, let’s talk about
the current state of affairs.

The default policy usually is an implementa-
tion of java.security.Policy. If you’re using Java
Authentication and Authorization Services
(JAAS) and principal-based permission entries,
you need to use an implementation of
javax.security.auth.Policy. Depending on the
particular JAAS provider, the actual policies may
be stored locally in a file or externalized to a pol-
icy server (Netegrity uses this approach) on
another tier.

IN A PREVIOUS ISSUE
(JDJ, VOL. 6, ISSUE 11),
YOU SHOWED HOW TO USE
JAVA WITH A PROXY
SERVER. THE TECHNIQUE

YOU SHOWED DOESN’T WORK
WITH OUR PROXY SINCE WE’RE
SOCKS-BASED. COULD YOU TELL
ME HOW TO GET THIS WORKING?

Q

Q

Q

?

?

97JANUARY 2002

Java COM

sys-con media
www.sys-con.com

world to

Java COM

98 JANUARY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

I gave myself one demerit for forgetting
about the other camp. Using a SOCKS-based
proxy is just as simple. The following code snip-
pet demonstrates how to set the appropriate
properties:

Properties prop = System.getProperties();
prop.put("socksProxyPort","1080");
prop.put("socksProxyHost","socks.thehartford.
com");
System.setProperties(prop);

Alternatively, you could specify the properties
when you start the virtual machine:

java-DsocksProxyPort=1080-DsocksProxyHost=
socks.thehartford.com

If there are other types of proxy servers on
the market that don’t support either of the two
recommended approaches, please don’t hesitate
to drop me a note.

I’M DEVELOPING AN RMI
SERVER THAT MAKES SOME
JNI CALLS TO DLLS. THE
PROBLEM IS THAT WHEN I
SHUT DOWN THE SERVER, I

WANT IT TO CALL A CLEAN-UP
FUNCTION IN THE DLL. I’VE
ALREADY TRIED FINALIZERS.

You’ve discovered that finalize is not guaran-
teed to be called by the VM. Besides taking this
approach would make the results of your code
very unpredictable. Java JDK 1.3 and later pro-
vide the antidote to your poison. Take a look at
addShutdownHook, which is part of the
java.lang.Runtime package.

HOW CAN OR SHOULD
I SUBCLASS
HTTPURLCONNECTION
SO I CAN, FOR
EXAMPLE, OVERRIDE

SETREQUESTMETHOD() TO ALLOW
THE SETTING OF CUSTOM
METHODS?

HOW CAN I USE
HTTPURLCONNECTION AND
PIPELINE MULTIPLE
REQUESTS USING THE
SAME CONNECTION?

I WOULD LIKE TO USE
HTTPURLCONNECTION TO
RETRIEVE FILES FROM A
REMOTE SERVER BUT AM
RUNNING INTO ISSUES

WITH LONG TIME-OUTS. IS THERE
A WAY TO SPECIFY A TIME-OUT
VALUE?

It’s unusual to receive three ques-
tions regarding the same topic. I’ve
decided to combine the answer to
all three questions into one
response since it should cover
all three questions.

You’ve already figured out
that there is no simple way of
overriding the behavior of
setRequestMethod as the
compiler won’t allow you to do
so.

The second and third questions
are similar in that they’re all related to the
default usage of sockets. HttpURLConnection
doesn’t allow us to pass in a socket connection
for reuse nor does it allow us to specify a time-out
value for the socket. While the RFCs allow you to
reuse a socket, its actual implementation is up to the
application server you’re using. The time-out value
of a socket defaults to
the operating sys-

Q

Q

Q

Q

The main reason you’ll want to use an obfuscator
for your programs is to protect some portion
of your code from being reverse-engineered.“

”

?

RECEIVE $15
0

DISCOUNT OFF F
ULL C

ONFERENCE

WEB SERVICES EDGE REGISTRATION

99JANUARY 2002

Java COM

our new

A S K D O C T O R J A V A

doctorjava@sys-con.com

tem’s default.As an example, if you’re on a Windows NT serv-
er you’ll see a time-out of 240 seconds, which is longer than
reasonable to wait. The socket object has the ability to spec-
ify a time-out but this detail is hidden from you.

The solution to all three questions is to spin your own
implementation of HttpURLConnection. This really isn’t
that difficult. I recommend downloading the source from
one of the open source implementations such as the
Jakarta project and using this as a starting point. Once
you have the source, you can create your own imple-
mentation that will allow you to pass in sockets and

time-out values as well as your own setRequestMethods.

HOW DO I SORT MY VECTOR OF
OBJECTS USING JAVA? DO I HAVE
TO WRITE MY OWN SORT ALGO-
RITHM?

A common question...and the short answer is no.
Using the Collections API, introduced in Java 2, makes the
whole process very easy. You achieve complete flexibility
by implementing the Comparator interface.

Vector fileList = new Vector();
//--[insert a bunch of cachedFile classes

//--[Sorting by the hits
Collections.sort(fileList, new Comparator(){

public int compare(Object o1, Object o2){
if (((cachedFile)o1).hits > ((cachedFile)o2).hits)

return -1;
else

return 1;
}

});

//--[Sorting on String
Collections.sort(fileList, new Comparator(){

public int compare(Object o1, Object o2){
return ((String)(((cachedFile)o1)).names.compareTo(

(String)(((cachedFile)o2)).names);
}

});

class cachedFile extends Object {
public String name;
public int hits;

}

Conclusion
I would like to wish everyone a happy New Year and

hope that you have enjoyed this column. I leave you with
a quote by Herbert N. Casson:

“The people who succeed are the efficient few. They
are the few who have the ambition and willpower to
develop themselves.”

• • •

Send your questions, praise, comments, and admiration to doc-

torjava@sys-con.com.

Published letters will be edited for length and clarity. Any refer-

ence to third parties or third-party products should not be con-

strued as an endorsement by Doctor Java or Java Developer’s

Journal.

AUTHOR BIO
Doctor Java, a.k.a. James McGovern, moonlights as an enterprise archi-
tect with Hartford Technology Services Company ‚ L.L.C.
(www.htsco.com), an information technology consulting and services
firm dedicated to helping businesses gain competitive advantage
through the use of technology.

Q

?

?

?

AIMED AT THE JAVA DEVELOPER COMMUNITY AND DESIGNED TO EQUIP ATTENDEES WITH ALL THE TOOLS AND INFORMATION TO BEGIN IMMEDIATELY
CREATING, DEPLOYING, AND USING WEB SERVICES.

EXPERT PRACTITIONERS TAKING AN APPLIED APPROACH WILL PRESENT TOPICS INCLUDING BASE TECHNOLOGIES SUCH AS SOAP, WSDL, UDDI, AND XML,
AND MORE ADVANCED ISSUES SUCH AS SECURITY, EXPOSING LEGACY SYSTEMS, AND REMOTE REFERENCES.

Jump-start your Web Services knowledge
Get ready for Web Services Edge East and West!

PRESENTERS...
Anne Thomas Manes, Systinet CTO, is a widely recognized industry
expert who has published extensively on Web Services and service-based comput-
ing. She is a participant on standards development efforts at JCP, W3C, and UDDI,
and was recently listed among the Power 100 IT Leaders by Enterprise Systems,
which praised her “uncanny ability to apply technology to create new solutions.”

Zdenek Svoboda is a Lead Architect for Systinet’s WASP Web
Services platform and has worked for various companies designing and developing
Java and XML-based products.

BOSTON, MA (Boston Marriott Newton)JANUARY 29
WASHINGTON, DC (Tysons Corner Marriott)FEBRUARY 26
NEW YORK, NY (Doubletree Guest Suites)MARCH 19
SAN FRANCISCO, CA (Marriott San Francisco)APRIL 23
REGISTER WITH A COLLEAGUE AND SAVE 15% OFF THE $495 REGISTRATION FEE.

Register at www.sys-con.com or Call 201 802-3069
EXCLUSIVELY SPONSORED BY

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

100 JANUARY 2002

Exclusive: Excerpts from JavaDevelopersJournal.com

Introduction by Alan Williamson

LATE LAST YEAR, in a move that many Java developers at the
time likened to the wily fox inviting the unsuspecting hen round
for a candlelit dinner, Microsoft Corp extended an invitation to
JavaLobby founder Rick Ross to come to its headquarters…and
check out .NET firsthand.

The invitation was the direct result of a public challenge the
notoriously MS-skeptical Ross had issued to Microsoft in
October. Ross promptly accepted the invitation. His resulting
report sparked what the astonished founder describes as “more
feedback, period, as well as more positive feedback, than any
other item that’s ever been published on JavaLobby’s site.”

So, has MS “brainwashed” Ross? The First JavaLobbyist him-
self, who is by no means an unsuspecting hen but on the con-
trary a fiercely independent thinker with a huge passion for Java
development and developers, says not.

“Many of the people who have written postings to JavaLobby
since my report was sent to members,” explains Ross to JDJ,
“were just reacting I think to the fact that I would even mention
.NET…but they seem somehow to have missed my explicit mes-
sage, right at the beginning of the whole Report, that .NET in my
view represents what it always has and always will represent: a
‘platform lock-in to Windows.’”

“Ignorance about .NET within the Java community,” con-
cludes Ross, “is much more dangerous than informed aware-
ness.”

True to our tradition of letting developers decide issues for
themselves based on the facts, the editorial board of JDJ has
resolved to let readers of JDJ judge for themselves.

Alan Williamson
Editor-in-Chief, Java Developer’s Journal

HIGHLIGHTS OF RICK ROSS’S
VERDICT ON .NET

Rick Ross Founder, JavaLobby • www.javalobby.org

THE .NET “MASTER BRAND” touches every one of
Microsoft’s business units, and the company appears to be
more organized, aligned and excited than I have ever seen
it.

The developer tools they have integrated into Visual Studio
.NET are genuinely powerful and attractive, but the price is the
same as it has always been – platform lock-in to Windows.
Microsoft is actively working through ECMA to standardize the
CLR, C#, and much of the .NET framework – a path leading ulti-
mately to ISO. This ECMA effort may be primarily symbolic,
however, since only a player with enormous resources and fund-
ing could possibly implement the standard. If you use .NET you
can expect to be using it only on Windows for a long time to
come. Even on Windows alone the .NET platform will be a for-
midable economic force that will eventually touch most of us, if
not all of us.

The Strategic Value of Java Developers
Microsoft may be starting to remember that it needs to love

developers, and Java developers are in the sweet spot – very fre-
quently controlling decision-making power and influence over
the distributed enterprise apps on which .NET’s success will
depend. There are signs that Microsoft may wish to renew good
relations with the deeply alienated Java developer community,
but cleaning up the mess it has created over the past few years
would take amazing diplomatic skill and require concessions
that I doubt Microsoft is able and willing to make. Certainly
nothing could alter the cold rivalry between Microsoft and Sun,
but things could get very interesting if Microsoft somehow
found a way to win back a modicum of trust and respect from
Java developers. Could Microsoft possibly be that smart? What
would it take? It’s a scenario that is hard to even imagine...

Observations & Opportunities
In many ways I think developers and consumers should wel-

come the emergence of .NET as a powerful competing force that
will definitely keep the pressure on Java technology to adapt,
evolve and improve. In fact, .NET will even provide new market
opportunities for Java-based Web services since they are so easy
to use within VB.NET and ASP.NET. Web services could be a crit-
ical factor in the mix, since the XML-based technology reduces
the pressure for people to code in the same language in order to
work together cooperatively. Business is business, so if Java
developers can reasonably expect to profit from interoperating
with .NET, then many will probably at least be willing to listen.

Faces of Real People, Not the Death Star
Microsoft is a most gracious host, and I was genuinely

impressed by the intensity and intelligence of the people who
presented the enormous set of products and technologies they
will market under the .NET “master brand”. These individuals
were organized, informed, patient, thoughtful and non-defen-
sive – people who were easy to like and whom I am glad to know.
As one JL member wrote to me before my trip, the walls in
Redmond are not painted black like the Death Star.

…With such excellent Java experts on hand the conversations
were dynamic, even exciting. The questions we fielded and the
answers we received were articulate. It’s fair to say that everyone
learned a lot…

The Agenda Was Jam-Packed
The days were packed with back-to-back sessions on the

Common Language Runtime (CLR), Visual Studio .NET, C#,
ASP.NET, ADO, the .NET framework classes and APIs, security,
mobile development, and of course, Visual J# .NET.…

I was captivated by the presentations by Jim Miller on the CLR
and by Anders Hejlsberg on C#....

The Tools That Might Have Been
One of my major regrets about Microsoft’s alienation of the

Java world has always been that their fantastic talents and
resources were not focused on advancing the state of the art in
Java development tools…

Visual Studio .NET – The Tools That Are
Well, the answer is probably located somewhere within the

Visual Studio .NET product. It integrates the design, develop-
ment and testing experience for the more than 20 programming

THE CONTROVERSIAL "ROSS REPORT" ON MICROSOFT & .NET

Java COM

Wireless Edge will provide the depth
and breadth of education and prod-
uct resources to allow companies to
shape and implement their wireless
strategy. Developers,
i-technology professionals and IT/IS
management will eagerly attend.

WHO SHOULD ATTEND
Mobile & Wireless Application Professionals
who are driving their enterprises’
wireless initiatives:

• Program Developers
• Development Managers
• Project Managers
• Project Leaders
• Network Managers
• Senior IT and Business Executives

C o n f e r e n c e T r a c k s
TTrraacckk OOnnee::
DDeevveellooppmmeenntt

WWAAPP

ii--MMooddee

BBlluueettooootthh // 880022..1111

SShhoorrtt MMeessssaaggiinngg

IInntteerraaccttiivvee
GGaammiinngg

GGPPSS // LLooccaattiioonn--
BBaasseedd

WWiirreelleessss JJaavvaa

XXMMLL && WWiirreelleessss
TTeecchhnnoollooggiieess

TTrraacckk TTwwoo::
CCoonnnneeccttiivviittyy

SSmmaarrtt CCaarrddss

WWiirreelleessss LLAANNss
iinnccll.. BBlluueettooootthh

UUMMTTSS//33GG
NNeettwwoorrkkss

SSaatteelllliittee
BBrrooaaddbbaanndd

TTrraacckk TThhrreeee::
WWiirreelleessss AAppppss

EEdduuccaattiioonn

HHeeaalltthh CCaarree

EEnntteerrttaaiinnmmeenntt

TTrraannssppoorrtt

FFiinnaanncciiaall SSeerrvviicceess

SSuuppppllyy CChhaaiinn
MMaannaaggeemmeenntt

TTrraacckk FFoouurr::
HHaarrddwwaarree

CCeellll PPhhoonneess//

WWoorrlldd PPhhoonneess

PPDDAAss

HHeeaaddpphhoonneess//
KKeeyybbooaarrddss //
PPeerriipphheerraallss

TTrraannssmmiitttteerrss//
BBaassee SSttaattiioonnss

TTaabblleettss

TTrraacckk FFiivvee::
BBuussiinneessss FFuuttuurreess

WWiirreelleessss iinn
VVeerrttiiccaall IInndduussttrriieess

TThhee WWWWWWWW

UUnnwwiirreedd
MMaannaaggeemmeenntt

FFrroomm 33WW ttoo 44WW::
IIssssuueess aanndd TTrreennddss

""AAllwwaayyss--OOnn""
MMaannaaggeemmeenntt

EExxppllooiittiinngg tthhee
BBaannddwwiiddtthh EEddggee

UUnnpplluuggggeedd
VVaalluueewwaarree

WWiirreelleessss SSaalleess &&
MMaarrkkeettiinngg

Plan
to Exhibit
Provide the Resources To

Implement Wireless Strategy

The conference will motivate and

educate. The expo is where attendees will want

to turn ideas into reality. Be present to offer your solutions.

INTERNATIONAL
WIRELESS BUSINESS&TECHNOLOGY

CONFERENCE & EXPO

Shaping Wireless Strategy
for the Enterprise

Santa Clara, CA May 7-9, 2002

W W W. S Y S - C O N . C O M

FOR EXHIBIT & SPONSORSHIP
INFORMATION PLEASE CALL

201 802-3004

C O N F E R E N C E & E X P O
C O N F E R E N C E & E X P O

Plan to Attend the
3-DAY Conference

S P E A K E R P R O P O S A L S I N V I T E D

SHAPE
YOUR

WIRELESS
STRATEGY...
SAVE THE
DATES!

EXCLUSIVE
SPONSORSHIPS

AVAILABLE
Rise above the noise.

Establish your company
as a market leader.

Deliver your message
with the marketing

support of

W
W

W
.W

IR
EL

ES
SE

DG
E2

00
2.

CO
M

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

102 JANUARY 2002

languages and the numerous frameworks that comprise the
.NET platform. VS .NET is a “tour de force” powerhouse, and it is
readily extensible by third-party tool providers. There are
already commercial add-ins coming online, and the VS .NET
product isn’t even officially launched yet. It appears the devel-
opment experience is more integrated in VS .NET than ever
before. It was impressive how many different tools and capabil-
ities were demonstrated by the various presenters, all within the
scope of the comprehensive master program.…

An Integration Opportunity?
I wonder if someone will see a market opportunity for inte-

grating Jikes, ANT, and the real JDK into this environment? It
certainly seemed like some Java integration would be feasible
and even easy, but it would obviously take more exploration to
understand what the potential benefits would be? … Under the
right circumstances integrating VS .NET and Java could be a very
interesting project.

Visual J# .NET – Not What We Thought
Visual J#.NET is an intriguing product, if somewhat enigmatic

within a larger view of .NET as a platform. It turns out that
Microsoft completely botched the initial “leak” about J# and JUMP
to the media, positioning it as a tool to “help” Java programmers
convert their Java code to C#. That was a foolish marketing mistake
that will probably forever discolor the reality that J# is a much
more sincere effort at providing first-class Java support (up to a
point) within .NET. J# is not a code converter at all, but rather an
implementation of nearly the entire JDK1.1.4 platform inside of
.NET. I suppose JDK1.1.4 is the point at which Microsoft’s rights
terminate under the settlement of the Sun lawsuit…

Compatible, In That Microsoft Kind of Way
The interesting thing about Visual J# .NET is that Microsoft

claims it passes the full 15,000 tests of the Java conformance
testing suite. I don’t know how it could do this without RMI and
JNI in there? Even if you exclude the tests involving those fea-
tures, however, it would still appear that Microsoft has invested

significantly in creating a Java implementation for .NET that is
as conformant as they could make it. We watched an applet with
AWT graphics compiled, deployed, and executed by J# within
the .NET runtime, which was pretty cool. …

Why Make Visual J# .NET Anyway?
So why did Microsoft create Visual J# .NET? I mean, it took a

lot of money and effort to provide this much support for the Java
programming language and platform within the .NET frame-
works.…The stock answer is to provide support for VJ++ users,
but the answer posed by Gary Cornell may well provide the best
explanation: Java is the language now used by nearly all aca-
demic programming courses. If Microsoft does not have support
for Java, as a language, within its new developer tools, then it is
sure to have a very difficult time gaining acceptance for Visual
Studio.NET within academia…because Java is the language they
now use to teach “Programming 101.”…

My Conclusions, for the Moment
In conclusion, the .NET platform is huge, and we will all prob-

ably encounter it in one form or another. It seems to me that igno-
rance about .NET within the Java community is much more dan-
gerous than informed awareness. I realize that it’s only natural for
Java developers to consider Microsoft’s offerings to be suspect,
but I think we should not close the door on .NET blindly. There
will soon be a lot of discussion about the comparative pros and
cons of J2EE and .NET, and J2EE won’t win by default just because
.NET originates from Microsoft. Interestingly, there may even be
some excellent opportunities for the Java world and the Microsoft
world to interoperate profitably via XML Web services. If the USA
and China can have healthy economic trade despite significant
ideological differences, then there’s a possibility that those of us in
the freedom-loving Java world can engage in healthy economic
trade with the many millions who will be locked into Windows
and .NET. Stranger things have happened…

To read Ross’s “My December Trip to Microsoft” in full, go to
www.sys-con.com/java/.

Rick Ross sold out!
Posted by <mailto:mihir@usa.net>Mihir Karia

(mihir@usa.net) 2001-12-20 16:59:22

I suspect that Rick works for M$ and that they

(M$) are once again attempting to sabotage

the Java platform. Since they cannot do it

openly, they are doing it covertly.

There are so many issues that Rick could have

brought up about the .NET platform but

instead his article reads like a “Ooh! .NET is not

so bad after all.” Give me a flying break!

He wonders why M$ introduced J# into the .NET

environment. Yeah right! It becomes pretty obvious

as he later writes “They have also added extensions

to J# so that people can use Java more effectively in

conjunction with inline metadata and other fea-

tures of .NET.” Has he missed the point of Java and

platform independence? A Java lobbyist my rear!

If we have people like Rick Ross lobbying for

Java, we are surely doomed.

December in Redmond
Posted by <mailto:jt@iwaypublishing.com>

John Thompson (jt@iwaypublishing.com)

2001-12-20 20:28:20

Nice work on the .NET report. In this age of

interoperation, too many Java developers take

far too much pride in their ignorance of all

things Redmond.

You are correct, Java developers lost a lot when

J++ development was curtailed in ’97 – no one

builds GUIs like Microsoft. No one tests usabil-

ity, no one leverages Windows, no one com-

pletes the key-chord implementations,...like

they do.

Also, as you mention, it is clear that there are

some things lacking in the Java core language.

Microsoft was putting some of those things in

– against the spirit of the write-once run-any-

where mantra, but still valuable features. The

fact that the response to that behavior was to

curtail any enhancements at all is a loss to us

all. After all, C++ continued to evolve for many

years with new and powerful features.

I can think of several omissions in Java that

hamper enterprise development. For example

(and I know this is controversial), the lack of a

preprocessor makes developing and coding

applications larger than the original-vision

wizzy applet very trying. Microsoft had added

this.

The threading model in Java is convenient in

its unbiquity, but very limited in scope. There’s

room for growth here.

Not to knock it all – we’re all getting a lot done

with what’s there!

And, right, if China and the US, if Russia and

the US can work together, we’d all better know

something about .NET.

Rick, you’ve made a welcome contribution to

that learning process.

READER RESPONSES: THE ROSS .NET REPORT DIVIDES JAVA DEVELOPERS

To read the full text of these and other responses, or to add your own comments, go to www.sys-con.com/java/.

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

magazinemagazine

archives

edition

s guide

ore

ontentcontentcontentcocontentcontent

advertiseadvertise subscribesubscribe contactcontact

The World's Leading Java Resource

J2
SE

H
om

e
J2

E
E

J2
M

E

JDJ Online
Visit www.javadevelopersjournal.com every day

for fast-breaking Java news and events. Know what’s
happening in the industry, minute by minute, and
stay ahead of the competition.

2002 Readers’ Choice Awards
Vote for your favorite Java software, books, and

services in our annual JDJ Readers’ Choice Awards.
Categories include Best Java Testing Tool, Best Mobile
Database, Best Java Messaging Tool, Best Java E-
Business Framework, Best Java EAI Platform, Best Java
Web Services Development Toolkit, and Best
Database Tool/Driver.

The JDJ Readers’ Choice Awards program, often
referred to as the “Oscars of the software industry,”
has become the most respected industry competition
of its kind. Winners will be announced in June at Web
Services Edge 2002 Conference and Expo in New York
City.

JavaDevelopersJournal.com Developer Forums
Join our new Java mailing list community. You and

other IT professionals, industry gurus, and Java
Developer’s Journal writers can engage in Java discus-
sions, ask technical questions, talk to vendors, find
Java jobs, and more. Voice your opinions and assess-
ments on topical issues – or hear what others have to
say. Monitor the pulse of the Java industry!

Search Java Jobs
Java Developer’s Journal is proud to offer an

employment portal for IT professionals. Get direct
access to the best companies in the nation. Learn
about the “hidden job market” and how you can find
it. If you’re an IT professional curious about the job
market, this is the site to visit.

Simply type in the keyword, job title, and location
and get instant results. You can search by salary, com-
pany, or industry.

Need more help? Our experts can assist you with
retirement planning, putting together a résumé,
immigration issues, and more.

JavaBuyersGuide.com
JavaBuyersGuide.com is your best source any-

where, anytime on the Web for Java-related software
and products in more than 20 mission-critical cate-
gories, including application servers, books, code,
IDEs, modeling tools, and profilers. Check the Buyer’s
Guide for the latest and best Java products available
today.

What’s Online... January 2002

Java COM

104 JANUARY 2002

Java COM

SITRAKA
JClass ServerChart V1.1
Bytecode

ALTOWEB
Application Platform Release 2.5

The AltoWeb Application Platform lets you build,
deploy, and manage J2EE applications and Web
Services up to 10x faster without requiring extensive
J2EE or Web Services expertise. How? By replacing
lengthy, custom and complex J2EE, XML and
Web Services coding with rapid component
assembly and reuse.

BORLAND
Delphi

Delphi 6 makes next-generation e-business develop-
ment with Web Services a snap. BizSnap Web Services
development platform simplifies business-to-business
integration by easily creating Web Services. DataSnap
Web Services-enabled middleware data access solutions
integrate with any business application. Check out our
Web site for system requirements.

W W W . J D J S T O R E . C O M

$3,540.00

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

If you've used JClass Chart in your client-side appli-
cations, you already know the value of data visuali-
zation to your end-users. With JClass ServerChart,
you can bring a wide range of charts and graphs
right to their Web browsers, giving them real-time
access to business-critical data in an intuitive envi-
ronment.

$3,999.00221980 $2,999.00

GUARANTEED BEST PRICES

FOR ALL YOUR
WEB SERVICES

SOFTWARE NEEDS
CAPE CLEAR

CapeStudio

CapeStudio is a Rapid Application Development (RAD) envi-
ronment for creating Web Services and XML-based applica-
tions. It consists of an integrated toolset. CapeStudio
Mapper enables XML data transformations in a graphical
environment and generates standard XSLT. CapeStudio
WSDL Assistant generates Web Services client proxy and server skeleton
code based on standard WSDL. UDDI Registry Browser searches for avail-
able Web services descriptions.

$445.00
CAPE CLEAR

CapeConnect Three

CapeConnect is a complete Web Services platform
that allows you to automatically expose your existing
Java, EJB and CORBA components as Web Services
without writing code. CapeConnect is capable of con-
necting a wide range of technologies (including Java,
J2EE, CORBA, C++, COM, C#, Visual Basic, and Perl) using Web
Services standards such as SOAP, WSDL, and UDDI. CapeConnect can
be used internally over intranets and also can be used to expose busi-
ness logic over the Internet, for use by customers and partners.

$950.00

SILVERSTREAM
Extend Application Server

SilverStream eXtend allows you to rapidly create,
assemble, consume and deploy Web Services. It
includes an advanced and intuitive development
environment. This workbench provides everything
for developers and business analysts to create, assemble, consume
and deploy services. And it integrates with your favorite code editors and
source control systems.

$495.00

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA
BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

Developer Edition (5 User)
Sale Price

$3,799.00Sale Price

$2,849.99

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

W
eb

Services journal

Readers’
CHOICE
 AWARD

WSJ
World class

 AWARD

SUBSCRIBE NOW AND SAVE $31.00
OFF THE ANNUAL NEWSSTAND RATE

ONLY $149 FOR 1 YEAR (12 ISSUES) REGULAR RATE $180
OFFER SUBJECT TO CHANGE WITHOUT NOTICE

Introductory
Charter Subscription

SYS-CON Media, the

world’s leading publisher of

i-technology magazines for

developers, software

architects, and

e-commerce professionals,

brings you the most

comprehensive coverage of

WebSphere.

WebSphereDevelopersJournal.com

The
World’s

Leading

Independent

WebSphere

Developer

Resource

The
World’s

Leading

Independent

WebSphere

Developer

Resource

Java COM

106 JANUARY 2002

Infragistics Launches JSuite 6.0
(Cranbury, NJ) – Infragistics
announced the release of JSuite
6.0, an all-inclusive
suite of presenta-
tion-layer Java
components that offer develop-
ers a complete Java solution.

Infragistics simultaneously
announced it would launch
PowerChart Server Edition, a
highly scalable Java server-side
charting component, as a
standalone product.
www.infragistics.com

Sun Releases Java BluePrints
for Wireless Program
(Santa Clara, CA) – Sun
Microsystems, Inc., announced
the immediate
availability of their
Java BluePrints for
Wireless program,
a collection of
end-to-end best
practices, guide-
lines, and architec-
tural recommen-
dations that demonstrates how to
build a distributed, transaction-
oriented enterprise application
using J2EE on the server and
J2ME on the client.

The new Java BluePrints pro-
gram is delivered, free of charge,
through white papers and the
Java Smart Ticket, a real-world

sample application that illus-
trates various recommended
development techniques. It’s
available from Sun’s Web site at
http://java.sun.com/blueprints
and from the Wireless Developer
Initiative site at http://developer.
java.sun.com/developer/prod-
ucts/wireless.

Rational Announces
Rational Suite v2002
(Lexington, MA) – Rational
Software announced the release
of Rational Suite
v2002, highlighted
by a new product, Rational
ProjectConsole.

Rational Suite v2002 comes
with 15 pretested, integrated, and

co-released products in
eight Rational Suite edi-
tions. New features
include Java enhance-
ments, two new run-
time observation capa-
bilities, and Rational
ProjectConsole, a Web-
based tool that helps

software development teams
measure project progress and
software quality.
www.rational.com

Codagen Releases Gen-it v2.0
(Montreal) – Codagen
Technologies Corp. announced the
general availability of Gen-it v2.0,

an add-on enhancement software
solution that inte-
grates with model-
ing and IDE tools
to generate up to 100% of the code
associated with any application
architecture, and up to 70% of the
total application code.
www.codagen.com

Together ControlCenter Earns
IBM ServerProven Validation
(Raleigh, NC) – TogetherSoft
Corporation’s Model-Build-Deploy
Platform for end-to-end software

development – Together
ControlCenter – has been validated
as an IBM ServerProven solution.

TogetherSoft received
ServerProven approval after com-
pleting the validation program at the
IBM Solution Provider Center in
Waltham, Massachusetts. There,
Together ControlCenter was installed
and tested on four IBM eServer
xSeries 330 running Microsoft
Windows NT, Windows 2000, Red
Hat Linux, and SuSE Linux.
www.pc.ibm.com/ww/eserver/
xseries/serverproven/index.html
www.togethersoft.com

TechMatrix to Distribute Aligo
M-1 Mobile App Server
(Tokyo and San Francisco) –
TechMatrix has entered
an agreement with Aligo,
Inc., to be the first Japanese dis-
tributor of the Aligo M-1 Mobile
Application Server.

Under the terms of this agree-
ment, TechMatrix can
now offer its customers
Aligo’s Java-based
mobile application server software,
which is suited for companies that
want to make corporate data and
applications available to multiple
wireless devices.
www.aligo.com
www.techmatrix.co.jp

SYS-CON Events Announces
Web Services Edge 2002
World Tour Tutorial Series
(Montvale, NJ) – SYS-CON
Events, Inc., announced the
dates and locations of a new
tutorial series in preparation
for SYS-CON’s Web Services
Edge 2002 International Web
Services Conference & Expo.
The first leg of its world tour,
“Developing SOAP Web
Services,” is exclusively spon-
sored by Systinet
Corporation.

An intense one-day tutorial
aimed at the Java developer

community, “Developing
SOAP Web Services” is
designed to equip profes-
sional developers with all
the tools and information
they need to immediately
begin creating, deploying,
and using their own Web
services. Expert practition-
ers will take an applied

approach and cover base tech-
nologies such as SOAP, WSDL,
UDDI, and XML, as well as more
advanced topics such as security,
J2EE integration, exposing legacy
systems, and integrating Web
services into an existing IT infra-
structure.

Web Services Edge 2002 East
will be held June 24–27 at the
Jacob Javits Convention Center
in New York, and Web Services
Edge 2002 West will be held
October 1–3 at the San Jose
Convention Center in
California.

The one-day Web services
tutorial kicks off in Boston on
January 29, then travels to
Washington, DC, New York, and
San Francisco. Further informa-
tion and online registration is
available at www.sys-con.com.

J2
SE

H
om

e
J2

E
E

J2
M

E

(Montvale, NJ) – Evans Data Corporation has ranked Java
Developer’s Journal as “the most trusted developer publica-
tion” among developers who use Java, according to SYS-CON
Media, the world’s leading i-technology publisher. The research
results were published in the Evans Data Developer Marketing
Patterns 2001 Annual Report, an independent market research
report prepared by the leading market research firm serving
software and developer markets.

“We are very pleased to see, in our sixth year of publication,
that Java Developer’s Journal continues to serve the fast-grow-
ing Java developer community as the hands-down leader of
quality Java information in the world. JDJ’s unmatched leader-
ship is not based solely on its circulation – which is larger than
all other Java publications put together – but also on the high
quality of its editorial content,” said Alan Williamson, editor-in-
chief of the magazine. “The Evans Data report confirms what
we hear from our readers and JDJ’s sponsors and advertising
partners every day.”
www.sys-con.com

Java Developer’s Journal
Ranked First in Survey

Your Own MagazineYour Own Magazine
Do you need to differentiate yourself from your competitors?

Do you need to get closer to your customers and top prospects?

Could your customer database stand a bit of improvement?

Could your company brand and product brands benefit from a higher profile?

Would you like to work more closely with your third-party marketing partners?

Or, would you simply like to be a magazine publisher?

SYS-CON Custom Media is a new division of

SYS-CON, the world's leading publisher of

Internet technology Web sites, print magazines,

and journals.

SYS-CON was named America's fastest-grow-

ing, privately held publishing company by Inc. 500

in 1999.

SYS-CON Custom Media can produce inserts,

supplements, or full-scale turnkey print magazines

for your company. Nothing beats your own print

magazine for sheer impact on your customers'

desks... and a print publication can also drive new

prospects and business to your Web site.

Talk to us!

We work closely with your marketing depart-

ment to produce targeted, top-notch editorial and

design.We can handle your distribution and database

requirements, take care of all production demands,

and work with your marketing partners to develop

advertising revenue that can subsidize your magazine.

So contact us today!So contact us today!
East of the Rockies,
Robyn Forma,
robyn@sys-con.com,
Tel: 201-802-3022

West of the Rockies,
Roger Strukhoff,
roger@sys-con.com,
Tel: 925-244-9109

Go
Online
and
Subscribe
Today!

Go
Online
and
Subscribe
Today!

Premiering...this winter
subscribe Now!FORFASTFORFASTDELIVERY Helping

you enable
inter-company
collaboration
on a global scale

• Product Reviews
• Case Studies

•Tips, Tricks
and more!

INTRODUCTORY OFFER

SAVE $31 *

HURRY, DON’T DELAY! OFFER EXPIRES DECEMBER 31, 2001

SPECIAL

We bLogicDevelopersJournal.com
SYS-CON Media, the world’s leading publisher of i-technology magazines for developers, software architects, and e-commerce
professionals, brings you the most comprehensive coverage of WebLogic. *Only $149 for 1 year (12 issues) regular price $180.

Java COMJava COM

108 JANUARY 2002

AUTHOR BIOS
Bill Baloglu is a principal

at ObjectFocus
(www. ObjectFocus.com),

a Java staffing firm in
Silicon Valley. Previously he
was a software engineer

for 16 years. Bill has
extensive OO experience

and has held software
development and senior
technical management

positions at several Silicon
Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principal
at ObjectFocus. His prior

position was at
Renaissance Worldwide, a

multimillion-dollar global
IT consulting firm, where

he held several senior
management positions in

the firm’s Silicon Valley
operations.

Unless you’ve been living in a cave
for the past five years, you already know
the story. After unprecedented growth
and feverish hiring across the spectrum
of high-tech industries, the party is over.

Start-ups have gone belly-up, and as
the sluggish economy turns various
shades of grim, even the industry’s
biggest, most “secure” companies are in
rapid downsizing mode.

We’ve addressed various aspects of
this change in several columns over the
past year. But now that even the most
senior of engineers are struggling to find
work, effective job search techniques are
more critical than ever.

Fact: Since unemployed tech profes-
sionals far outnumber available jobs,
employers who post an open position no
longer have to scramble to fill those posi-
tions. They must now sort through the hun-
dreds of résumés that flood their in-boxes.

How do you stand out from the
crowd or even get your résumé seen in
this sudden flood of competition?

How do you get the attention of the
hiring people to get an interview?

Here are a few dos and don’ts for
finding work in this tight market:

Do:
1. Network – contact everyone you’ve ever

had a good working relationship with
(former managers, peers, and team
members) and let them know you’re
available. Send them an updated résumé
and ask them to pass it on to potential
hiring managers at their company.

Most employers know that the best
candidates are still referrals from val-
ued employees.

Even if there’s no position immediate-
ly available, try to set up a brief informa-
tional interview to introduce yourself and
find out what they’re doing. This gives
potential employers a chance to match
your face to your résumé – and keep you
in mind when positions open up.

2. Attend as many industry networking
functions as you can. Bring a fresh

batch of résumés with you and collect
as many business cards as you can.
Keep in e-mail touch with new con-
tacts on a regular (monthly) basis to
refresh their memories and let them
know you’re still available.

3. Re-edit, highlight, and target your
résumé for every job you apply for.
This is time-consuming but effective.

4. Research the company you’re applying
to and contact anyone you know who
may have worked there at any time.
They could help direct you to the right
group or manager who may need
someone with your abilities.

5. Understand current market conditions
and be prepared to make adjustments
to your rate and/or expected level of
seniority. You may have been a senior
engineer last year but now you may
be considered intermediate. If you
want to work, keep your options open
to part time or contracting positions –
whatever it takes. Be flexible.

6. Work with reputable agencies to be con-
sidered for positions that aren’t posted
publicly. Many companies avoid sort-
ing through the deluge of résumés by
working directly with agencies.

7. Keep on top of new posted positions on
a daily basis. Your odds of standing
out in a crowd of 300 résumés are not
great, but they’re better if yours is one
of the first 20 résumés submitted.
Remember: Your time and your
timing are critical. Work smart
and act quickly.

Don’t:
1. Set up a system that automati-

cally sends out a generic
résumé to every job posting that
contains buzz words you’re
interested in.

Sending out the
same résumé for dif-
ferent types of jobs
suggests that either
you don’t understand
what they’re looking

for (or what the company is doing) or
you don’t really care. Also, good
managers and recruiters remember
résumés and names. They may end
up skipping over you for the right
position because you sent in your
résumé earlier for the wrong one.

2. Assume the only open jobs are the ones
posted on the Web or in the newspaper.
While you need to stay on top of these
openings, and apply to as many of
them as you’re qualified for, network-
ing contacts is always best.

3. Get discouraged. While industry lead-
ers agree that we may never again see
the kind of rapid growth and massive
hiring of the past few years, they also
agree that things will turn around.

The high-tech industry may ultimate-
ly evolve into a slightly different animal,
but for those who stay flexible, deter-
mined, and thorough in their job search,
there will always be opportunities.

What have your job search experiences
been like in the past few months? Let us
know what challenges you’ve faced and
what techniques have worked for you. E-
mail us at jdjcolumn@objectfocus.com.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

According to our sources and associates, this is the toughest job market that
anyone in the IT industry has seen in a long, long time.

When the Going Gets Tough…

C A R E E R O P P O R T U N I T I E S

…the tough work smart

J2
SE

H
om

e
J2

E
E

J2
M

E

jdjcolumn@ObjectFocus.com

• • •

sys-con
media

www.sys-con.com

Next Month
GETTING STARTED WITH JAVA ON THE IPAQ
Build and deploy Java apps
by Rob Tiffany

STEPPING OUT OF THE JAVA DATA OBJECTS CLOSET
Advanced issues using JDO
by Yaron Telem and Shay Litvak

BOOK REVIEW
Java Internationalization
by Andrew Deitsch, David Czarnecki, and Andy Deitsch
reviewed by Ajit Sagar

CAREER OPPORTUNITIES
“How’s the Boss?”
by Bill Baloglu and Bill Palmieri

PATTERN FOUNDATIONS: THE OPEN-CLOSED PRINCIPLE
Basic patterns
by Kirk Knoernschild

wireless java xml coldfusion powerbuilder websphere weblogic web services

subscribe online www.sys-con.com or call 800 513-7111 SYS-CON
MEDIA

www.wbt2.com

www.javadevelopersjournal.com

www.xml-journal.com

www.coldfusionjournal.com

www.powerbuilderjournal.com

www.webspheredevelopersjournal.com

www.wldj.com

www.wsj2.com

SUBSCRIBE NOW

TO THE

FINEST

TECHNICAL

JOURNALS

IN THE

INDUSTRY!

I suppose the logical context to which
“here” refers this time would be my cho-
sen career as a computer programmer. Of
all the possible directions I could have
taken – or been forced to take – somehow
I ended up working at something I really
enjoy, making a decent living in the
process. By any measure I count myself
among the supremely fortunate.

Of course, it hasn’t always been so.
Despite every generation’s dubious
claim to its original discovery, “teen
angst” was certainly alive and well in
the ’70s when I was a teen. Had I known
what to call it back then, I might have
applied for “poster child” status.

I guess I was a pretty “smart” kid
(though most of my teachers would
probably choose to narrow that charac-
terization to selected parts of my anato-
my), and I got fair grades without trying
very hard. I had a good memory and
could usually absorb enough informa-
tion to pass those simple, public-school
tests by a goofy sort of psychic osmosis.
Was I lucky? I’m not sure. Perhaps I’d
have learned more if I had to work hard-
er. It’s definitely a conundrum.

While I barely graduated high school
(who knew foosball wasn’t a for-credit
course?), I did so with a sufficiently high
grade-point average to graduate with
“honors.” To this day I remember being
earnestly chastised at the graduation
ceremony by a hard-working classmate
who had just missed the cut. “You didn’t
earn that,” she fumed, pointing at my
gold tassle. I just sort of smirked, if I
remember correctly, though her words
cut me as deeply as only the truth can.

Are brains (which I pretend to have) or
beauty (which, if I ever had, I have hence
given to my children) valid causes for
pride? Personally, I don’t think so. After all,
capable brains and natural beauty are
both simply accidents of birth, not the
result of any overt acts. In my idealistic
view, pride is something that should be
earned. At least that’s the belief I try to
instill in my smart, beautiful children –
the ones I’m so deliriously proud of.

What lured me into the realm of mak-
ing computer science my livelihood? To
some extent computer science was an
accidental direction in my life. After my
cab-driving years, when I went back to col-
lege to finish some sort of degree, I found
that math was far and away my favorite
gig. The wee bits of memory capability that
had survived my youth seemed curiously
well suited to the mysteries and arcana of
mathematics: I’d found my “thang.”

As I progressed through the under-
graduate curriculum, a weird sort of
appreciation bloomed in me: an appre-
ciation for the mysterious beauty and
surprising consistencies of so-called
“higher” mathematics. Even at this rel-
atively introductory level, the logically
unifying connections between previ-
ously unrelated topics in math seemed
to manifest themselves as stunning
new aspects of the “natural” world.
Certainly sunsets and flowers can be
breathtaking, but who would have
thought that the same could be said of
systems of equations or elegantly craft-
ed proofs?

Just before I got my math degree, my
father died rather suddenly. He was about

to start his thirtieth year teaching engi-
neering graphics at the local college; then
he was gone, leaving my Mom on her
own. After the joy I had experienced dis-
covering mathematics, I knew I wanted to
pursue a postgraduate education, and
now I simply had to do so at my Dad’s old
school so I could be close to home.

However, at that time Dad’s college did-
n’t have a postgraduate offering in math. I
remember sitting at the dining room table,
fanning the school’s catalog and literally
closing my eyes and stabbing my finger at
the first open page. “Hmmm...computer
science...” Something in my head clicked,
and the rest is history.

Of course, there were times when I
doubted myself, suffering a sort of “twen-
ty-something angst.” My first semester,
since my bachelor’s degree was not in
computer science, I signed up for the
entire undergraduate core of the curricu-
lum – assembly language, data struc-
tures, and compilers – in one fell swoop.
Passing these classes, while maintaining
a part-time job to support my new fami-
ly, almost did me in. But fortunately there
was – and still is – a certain beauty to dis-
cover in computer science too. That
search for beauty kept me going, and the
discoveries were just beginning.

I’m still searching for and finding
beauty. Part of the satisfaction I derive
from writing these little bits of fanciful
fluff is the belief that you, dear reader,
appreciate beauty too. Your presumed
attraction to Java – a beautiful language,
indeed – is evidence enough for me.

blair@blairwyman.com

C U B I S T T H R E A D S

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

WRITTEN BY
BLAIR WYMAN

Jav
a D

ude
s

“How did I get here?” There’s a question I’ve asked myself many, many times over the years.
Decorum prevents me from recounting all the contexts to which “here” has referred, but suffice it to say
that my inflection has become less frenzied as I matured.

The Search for Beauty
J2

SE
H

om
e

J2
E

E
J2

M
E

Java COM

110 JANUARY 2002

